

Flask By Example

Unleash the full potential of the Flask web framework
by creating simple yet powerful web applications

Gareth Dwyer

BIRMINGHAM - MUMBAI

Flask By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-693-3

www.packtpub.com

Credits

Author
Gareth Dwyer

Reviewers
Burhan Khalid

Kyle Roux

Rahul Shelke

Commissioning Editor
Julian Ursell

Acquisition Editor
Kevin Colaco

Content Development Editor
Kajal Thapar

Technical Editors
Kunal Chaudhari

Ravikiran Pise

Copy Editors
Shruti Iyer

Sonia Mathur

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Disha Haria

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Gareth Dwyer first heard the phrase, "behind every no-entry sign there is a door,"
a couple of decades ago, and he has been looking for a counterexample ever since.
He hasn't found one yet. Gareth grew up with his three siblings in Grahamstown,
South Africa. There wasn't much there except some highly respected schools and
a small university. Gareth had heard that school was an unpleasant and largely
pointless experience, so he opted to skip it and go to the university instead. The
university door had a no-entry sign on the door because it only accepted people who
had gone to school. Gareth ignored the sign. He studied piano for a while but soon,
he wondered if there was more to life than sitting in front of a keyboard all day. So
he switched from piano to computer science, and it took him a while to realize the
irony. He studied philosophy too because it was here that people never told him to
stop being so argumentative.

Gareth noticed the disparagement that his philosophy and computer science
departments felt towards each other, and he found it strange. He soon discovered
that he wasn't the first person to see that there was room for some common ground,
and he went to Europe to study computational linguistics, where he found other
people who liked debating the finer points of language while talking about the three
hardest problems of computer science (naming things, and off-by-one errors).

In between doodling on blank paper while listening to very knowledgeable people
lecture on content that was occasionally fascinating but often soporific, Gareth
has gained so-called "industry" experience with companies such as Amazon Web
Services in Cape Town and MWR InfoSecurity in Johannesburg. He has several
years' experience in writing, and his favorite languages are English and Python.

He discovered that writing and writing a book are not fully overlapping experiences,
and the former is hardly preparation for the latter. The pages that follow would not
have come into existence without the combined efforts of many people.

Acknowledgements

Thank you Neeshma and Kajal; you have been so very kind and patient in spite of my
disrespect for deadlines. Your feedback on each chapter while I was writing and your
suggestions that I try to keep to schedule have been invaluable. Thank you to everyone
else at Packt Publishing who has been involved in this book, from its idea, through
editing, through layout, through marketing, and all the nitty-gritty parts that the
reader will never think about. I'm looking forward to the next one already.

Thank you Alisa for listening, even when I complained about writing, and even
when I was still complaining a year later.

Thank you Theresa, Stephanie, and Lewis for ensuring I don't go completely sane.

Thank you to all the lecturers and tutors at Rhodes University who contributed to
what I know and who I am.

Thank you Ron for teaching me how to string words together, and how commas
work, and why some sentences sound nice and others don't.

Finally, thank you Mom and Dad for teaching me everything else.

About the Reviewers

Burhan Khalid has always been tinkering with technology, from his early days
on the XT to writing JCL on the ISPF editor, and from C and C++, Java, Pascal,
and COBOL to his latest favorite, Python. As a lover of technology, he is most
comfortable experimenting with the next big technology stack.

By day, he works in a multinational bank in the Alternative Channels unit, where he
gets to hack on, develop, and test applications that help execute transactions across all
manner of electronic devices and channels. In addition to his work, he also contributes
to open source projects, having released a few toolkits for transaction processing, and
he offers consultancy services to startups on their technology stacks and development
processes.

He is an avid volunteer; he is a mentor for Sirdab Lab (a startup accelerator),
a frequent speaker at the local Google Developer's Group, a presenter and volunteer
at StartupQ8 (a startup community), and an active user on StackOverflow.

You can reach him on Twitter @burhan

I would like to thank my mother and father for always encouraging
me, my wife for putting up with my long days at the keyboard and
my ever-growing gadget collection, and my friends and colleagues
for providing me with new challenges to sharpen my skills.

Rahul Shelke is a cofounder of My Cute Office Pvt. Ltd. and Qpeka Technologies
Pvt. Ltd. He also acts as an adviser for two other startups, and he helps startups in
their growth.

Prior to starting his own venture, Rahul worked with Blisstering solutions for more
than two years as a senior developer.

He is an MTech in computer science. His practical experience for the last five years
has been in web development, cloud computing, business intelligence, system
performance optimization, and software architecture design and development.

He has been actively involved in open source contributions since graduation,
and he has contributed to Python, Python-Flask, and Drupal.

First, I would like to thank the Packt Publishing team, Shweta H.
Birwatkar, and Gareth Dwyer, for giving me the opportunity to be a
part of this project.

A special thanks to My Cute Office team whose support helped me
manage work along with this book review. I would also like to thank
my family for supporting me during this process.

Finally, thanks to the countless support from Python-Flask's open
source community for providing me with such an easy and fast web
development framework.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

To Ron Hall, who taught me how to write

[i]

Table of Contents
Preface ix
Chapter 1: Hello, World! 1

Introducing Flask 2
Creating our development environment 2

Installing pip 2
Installing Flask 3

Writing "Hello, World!" 3
Writing the code 3
Running the code 5

Deploying our application to production 6
Setting up a Virtual Private Server 6
Configuring our server 8
Installing and using Git 9
Serving our Flask app with WSGI 11

Configuring Apache to serve our Flask application 13
Summary 16

Chapter 2: Getting Started with Our Headlines Project 17
Setting up our project and a Git repository 18
Creating a new Flask application 18
Introduction to RSS and RSS feeds 19

Using RSS from Python 21
URL routing in Flask 23
Publishing our Headlines application 26

Summary 28

Table of Contents

[ii]

Chapter 3: Using Templates in Our Headlines Project 29
Introducing Jinja 30
Basic use of Jinja templates 30

Rendering a basic template 31
Passing dynamic data to our template 32
Displaying dynamic data in our template 33

Advanced use of Jinja templates 33
Using Jinja objects 34
Adding looping logic to our template 34
Adding hyperlinks to our template 36
Pushing our code to the server 37

Summary 38
Chapter 4: User Input for Our Headlines Project 39

Getting user input using HTTP GET 39
Getting user input using HTTP POST 42

Creating a branch in Git 43
Adding POST routes in Flask 44
Making our HTML form use POST 44
Reverting our Git repository 45

Adding weather and currency data 45
Introducing the OpenWeatherMap API 46

Signing up with OpenWeatherMap 46
Retrieving your OpenWeatherMap API key 47
Parsing JSON with Python 48
Introducing JSON 48
Retrieving and parsing JSON in Python 48
Using our weather code 49
Displaying the weather data 50
Allowing the user to customize the city 50

Adding another search box to our template 50
Using the user's city search in our Python code 51

Checking our new functionality 52
Handling duplicate city names 53
Currency 54

Getting an API key for the Open Exchange Rates API 54
Using the Open Exchange Rates API 55
Using our currency function 55
Displaying the currency data in our template 56
Adding inputs for the user to select currency 57
Creating an HTML select drop-down element 58
Adding all the currencies to the select input 59
Displaying the selected currency in the drop-down input 60

Summary 62

Table of Contents

[iii]

Chapter 5: Improving the User Experience of Our
Headlines Project 63

Adding cookies to our Headlines application 65
Using cookies with Flask 65

Setting cookies in Flask 66
Retrieving cookies in Flask 67

Adding CSS to our Headlines application 70
External, internal, and inline CSS 70
Adding our first CSS 71
Adding padding to our CSS 73

Adding more styles to our CSS 73
Adding the div tags to the template file 74

Styling our inputs 74
Summary 76

Chapter 6: Building an Interactive Crime Map 77
Setting up a new Git repository 78
Understanding relational databases 79
Installing and configuring MySQL on our VPS 80

Installing MySQL on our VPS 81
Installing Python drivers for MySQL 81

Creating our Crime Map database in MySQL 81
Creating a database setup script 82

Creating the database 83
Looking at our table columns 83
Indexing and committing 84

Using the database setup script 84
Adding credentials to our setup script 85
Running our database setup script 85

Creating a basic database web application 86
Setting up our directory structure 86
Looking at our application code 87
Looking at our SQL code 88

Reading data 89
Inserting data 89
Deleting data 90

Creating our view code 90
Running the code on our VPS 91
Mitigating against SQL injection 93

Injecting SQL into our database application 93
Mitigating against SQL injection 95

Summary 96

Table of Contents

[iv]

Chapter 7: Adding Google Maps to Our Crime Map Project 97
Running a database application locally 98

Creating a mock of our database 98
Adding a test flag 99
Writing the mock code 99
Validating our expectations 100

Adding an embedded Google Maps widget to our application 100
Adding the map to our template 101

Introducing JavaScript 101
The body of our HTML code 102
Testing and debugging 103

Making our map interactive 105
Adding markers 105
Using a single marker 107

Adding an input form for new crimes 109
The HTML code for the form 109
Adding external CSS to our web application 111

Creating the CSS file in our directory structure 112
Adding CSS code 112
Configuring Flask to use CSS 113
Viewing the result 114
Publishing the result 115

Linking the form to the backend 116
Setting up the URL to collect POST data 116
Adding the database methods 117
Testing the code on the server 117

Displaying existing crimes on our map 118
Getting data from SQL 118
Passing the data to our template 120
Using the data in our template 120
Viewing the results 122

Summary 125
Chapter 8: Validating User Input in Our Crime Map Project 127

Choosing where to validate 127
Identifying inputs that require validation 128

Trying out an XSS example 129
The potential of persistent XSS 131

Validating and sanitizing 132
White and blacklisting 132
Validating versus sanitizing 132
Implementing validation 133
Validating the category 133

Table of Contents

[v]

Validating the location 134
Validating the date 135
Validating the description 138

Summary 140
Chapter 9: Building a Waiter Caller App 141

Setting up a new Git repository 143
Setting up the new project locally 143
Setting up the project on our VPS 144

Using Bootstrap to kick-start our application 145
Introducing Bootstrap 146
Downloading Bootstrap 146

Bootstrap templates 147
Adding user account control to our application 150

Introducing Flask-Login 150
Installing and importing Flask-Login 151
Using Flask extensions 151
Adding a restricted route 151
Authenticating a user 152

Creating a user class 153
Mocking our database for users 154
Logging in a user 155

Adding imports and configuration 155
Adding the login functionality 156
Checking the login functionality 158

Logging out a user 159
Registering a user 160

Managing passwords with cryptographic hashes 160
Implementing secure password storage in Python 164

Summary 168
Chapter 10: Template Inheritance and WTForms in Waiter
Caller Project 169

Adding the Account and Dashboard pages 170
Introducing Jinja templates 170

Creating the base template 171
Creating the dashboard template 173
Creating the account template 173
Creating the home template 174
Adding the routing code 174

Creating restaurant tables 176
Writing the restaurant table code 176
Testing the restaurant table code 182

Table of Contents

[vi]

Shortening URLs using the bitly API 183
Introducing Bitly 184
Using the bitly API 184
Getting a bitly oauth token 184
Creating the bitlyhelper file 185
Using the bitly module 185

Adding functionality to handle attention requests 186
Writing the attention request code 186

Adding the attention request route 187
Adding the attention request database code 187
Add the get and delete methods for attention requests 188
Modifying the dashboard route to use attention requests 189
Modifying the template code to display attention requests 189
Adding the resolve request application code 190
Testing the attention request code 191
Auto-refreshing the dashboard page 192

Adding user feedback with WTForms 192
Introducing WTForms 193
Installing Flask-WTF 194
Creating the registration form 194
Rendering the registration form 195

Updating the application code 196
Updating the template code 196
Testing the new form 198
Using WTForms in our application code 198
Displaying errors to our user 199
Testing the final registration form 201
Adding a successful registration notification 202

Modifying the login form 205
Creating the new LoginForm in the application code 205
Using the new LoginForm in the template 207

Modifying the create table form 208
Summary 210

Chapter 11: Using MongoDB with Our Waiter Caller Project 211
Introducing MongoDB 212
Installing MongoDB 212
Using the MongoDB shell 213

Starting the MongoDB shell 213
Running commands in the MongoDB shell 214

Creating data with MongoDB 214
Reading data with MongoDB 215
Updating data with MongoDB 216
Deleting data with MongoDB 217

Table of Contents

[vii]

Introducing PyMongo 218
Writing the DBHelper class 218

Adding the user methods 219
Adding the table methods 219
Adding the request methods 221

Changing the application code 222
Testing our application in production 222
Adding some finishing touches 223

Adding indices to MongoDB 224
Where do we add indices? 224

Adding a favicon 226
Summary 228

Appendix: A Sneak Peek into the Future 229
Expanding the projects 229

Adding a domain name 229
Adding HTTPS 230
E-mail confirmation for new registrations 231
Google Analytics 232
Scalability 233

Expanding your Flask knowledge 234
VirtualEnv 234
Flask Blueprints 235
Flask extensions 235

Flask-SQLAlchemy 235
Flask MongoDB extensions 236
Flask-MongoEngine 236
Flask-Mail 237
Flask-Security 237
Other Flask extensions 237

Expanding your web development knowledge 237
Summary 238

Index 239

[ix]

Preface
In theory, nothing works, but everyone knows why. In practice, everything works but no one
knows why. Here, we combine theory and practice; nothing works and no one knows why!

Learning computer science must always be a combination of theory and practice;
you need to know what you're doing (theory), but you also need to know how to
do it (practice). My experience of learning how to create web applications was that
few teachers found a sweet spot for this balance; either I read pages and pages about
inheritance, virtual environments, and test-driven development, wondering how it
all applied to me, or I installed a bunch of tools and frameworks and libraries and
watched the magic happen with no idea how it worked.

What follows is, I hope, a good balance. From the first chapter, you'll have a Flask
web application running that the whole world can visit, which is quite practical even
if it doesn't do anything but greet visitors with "Hello, World!". In the chapters that
follow, we'll walk through building three interesting and useful projects together.
In general, we'll build things ourselves wherever possible. While it's not good to
reinvent the wheel, it is good to be exposed to a problem before you're exposed to
the solution. Learning a CSS framework before you write a single line of CSS leaves
you in a confused state, in which you would wonder, "But why do I actually need
this?", and the same goes for many other frameworks and tools. So, we'll start from
scratch, take a look at why it's difficult, and then introduce tools to make our lives
easier. I think this is the ideal balance between theory and practice.

When I told people I was writing a book on Flask, the common response was "Why?
There are already so many books and tutorials on Flask." This is a valid question, and
the answer to it provides a nice outline for what to expect from this book. Flask By
Example is different from other Flask educational material and here's why.

Preface

[x]

We won't leave you stranded

Many Flask tutorials show you how to develop a Flask application and run it locally
on your own machine, and then they end. This is great as a first step, but if you're
interested in building web applications, you probably want them to be accessible
on the Web so that your friends, family, coworkers, and customers can admire your
handiwork without popping by your house. From our first project onward, our
applications will run on a Virtual Private Server (VPS) and be accessible to the world.

We won't build a blogging application

If you've read any web application development tutorials, you must have noticed
that nearly every one of them is about how to build a blog using x and y. I'm pretty
tired of the blog example (actually, I never want to see anyone show me how to build
a blog again). Instead, you'll create some interesting, original, and possibly even
useful projects while learning how to develop web applications with Flask.

We will focus on security

Cybercrime has become something of a buzzword of late. Arguably, the reason
that we read about major web applications being hacked on an almost daily basis
is because so many developers do not know about SQL Injection, CSRF, XSS, how
to store passwords, and so many other things that should really be considered
basic knowledge. As we develop the three projects in this book, we'll take the time
to explain some core security concepts in detail and show you how to harden our
applications against potentially malicious attackers.

We will give in-depth explanations

We won't just give you some code and tell you to run it. Wherever possible, we will
explain what we're doing, why we're doing it, and how we're doing it. This means that
you'll be able to take ideas from all of the projects, combine them with your own ideas,
and get started with building original content right after working through this book.

Therefore, I hope that this book will be of use to you, no matter whether you are
beginning to cut your teeth in the world of computer science and programming or
have a computer science degree from a famous university and have compiler theory
pouring out of your ears but now want to build something practical and fun. May you
have as much fun working through the projects as I did while putting them together!

Preface

[xi]

What this book covers
Chapter 1, Hello, World!, teaches you to set up our development environment and a
web server and write our first Flask application.

Chapter 2, Getting Started with Our Headlines Project, shows you how to run Python
code when the user visits a URL and how to return basic data to the user. We will
also look at fetching the latest headlines automatically using RSS feeds.

Chapter 3, Using Templates in Our Headlines Project, introduces Jinja templates and
integrates them into our Headlines project. We will show how to serve dynamic
HTML content by passing data from our Python code to template files.

Chapter 4, User Input for Our Headlines Project, shows how to get input from our users
over the Internet and use this input to customize what we will show our users. We
will look at how to access currenct weather information through JSON APIs and
include this information in our Headlines project.

Chapter 5, Improving the User Experience of Our Headlines Project, instructs you to add
cookies to our Headlines project so that our application can remember our users'
choices. We will also style our application by adding some basic CSS.

Chapter 6, Building an Interactive Crime Map, introduces our new project, which is
a crime map. We will introduce relational databases, install MySQL on our server,
and look at how to interact with our database from our Flask application.

Chapter 7, Adding Google Maps to our Crime Map Project, instructs you on adding a
Google Maps widget and shows how to add and remove markers from the map
based on our database. We will add an HTML form with various inputs for users
to submit new crimes and also display the existing crimes.

Chapter 8, Validating User Input in Our Crime Map Project, polishes off our second
project by making sure that users can't break it accidentally or through maliciously
crafted input.

Chapter 9, Building a Waiter Caller App, introduces our final project, which is an
application to call a waiter to the table at a restaurant. We will introduce Bootstrap
and set up a basic User Account Control system that uses Bootstrap as the frontend.

Chapter 10, Template Inheritance and WTForms in Waiter Caller Project, introduces
Jinja's template inheritance features so that we can add similar pages without
duplicating code. We will use the WTForms library to make our web forms easier
to build and validate.

Preface

[xii]

Chapter 11, Using MongoDB with Our Waiter Caller Project, discusses how to install
and configure MongoDB on our server and links it to our Waiter Caller project.
We will finish off our final project by adding indices to our database and a favicon
to our application.

Appendix, A Sneak Peek into the Future, outlines some important topics and technologies
that we weren't able to cover in detail and gives pointers on where more can be learned
about these.

What you need for this book
All the examples we will use assume that you use the Ubuntu operating system
on your development machine and that you have access to a server that runs
Ubuntu Server (we will discuss how to set the latter up in the first chapter). If you
strongly prefer another operating system and already have a Python environment
set up (including the Python package manger pip), then the examples will be easily
translatable.

All other software and libraries used in the book are freely available, and we will
demonstrate how to install and configure them in detail as the need arises.

Who this book is for
Have you looked at PHP and hated the clunky bloated syntax? Or, have you looked
at .Net and wished that it was more open and flexible? Have you tried your hand at
GUI libraries in Python and found them hard to use? If your answer to any one of
these questions is yes, then this is just the book for you.

It is also intended for people who know the basics of Python and want to learn how
to use it to build powerful solutions with a web frontend.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xiii]

A block of code is set as follows:

@app.route("/")
def get_news():
return "no news is good news"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import feedparserfrom flask import Flask
app = Flask(__name__)BBC_FEED = "http://feeds.bbci.co.uk/news/rss.xml"

Any command-line input or output is written as follows:

sudo apt-get update

sudo apt-get install git

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xiv]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/FlaskByExample_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/FlaskByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/FlaskByExample_ColorImages.pdf

Preface

[xv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Hello, World!
And hello, reader! Let's get started with building some Flask applications. Flask is
minimalist enough to allow you choice and flexibility; unlike in larger frameworks,
you choose what you want to do and then manipulate Flask to do your bidding, and
it is complete enough to work right out of the box.

We'll walk together through the development of three web applications; the first
one is straightforward and will allow you to cut your teeth on Flask and get used to
the new technologies and terminology while building a nontrivial web application;
the second will get you started with building a web application that makes use of a
traditional SQL database; and the final, which has the most features, will make use
of a NoSQL database and a frontend framework to create a useful and good-looking
web application.

In this chapter, we'll take a brief look at what Flask is and, perhaps more importantly,
what it isn't. We'll move on to setting up our basic development environment as well
as a web server, and we'll install a Python package manager as well as Flask itself. By
the end of the chapter, we'll have the outlines of our first app, and, as dictated by age-
old tradition, we'll use our new skills to display the text "Hello, World!".

In brief, we will cover the following topics:

• Introducing Flask
• Creating our development environment
• Writing "Hello, World!"
• Deploying our application to production

Hello, World!

[2]

Introducing Flask
Flask is a micro framework for Python web development. A framework, in the
simplest terms, is a library or collection of libraries that aims to solve a part of a generic
problem instead of a complete specific one. When building web applications, there
are some problems that will always need to be solved, such as routing from URLs to
resources, inserting dynamic data into HTML, and interacting with an end user.

Flask is a micro framework because it implements only core functionality (including
routing) but leaves more advanced functionality (including authentication and
database ORMs) to extensions. The result of this is less initial setup for the first-time
user and more choice and flexibility for the experienced user. This is in contrast
with "fuller" frameworks, such as Django, which dictate their own ORM and
authentication technologies.

As we'll discuss, our Hello World application in Flask can be written in only seven
lines of code, with the entire application consisting of a single file. Does that sound
good? Let's get going!

Creating our development environment
A development environment consists of all the software that a developer uses while
building software. For starters, we'll install a Python package manager (pip) and the
Flask package. In this book, we'll show detailed steps for developing using Python
2.7 on a clean installation of Ubuntu 14.04, but everything should be easy to translate
to Windows or OS X.

Installing pip
For our Hello World application, we only need the Python Flask package, but we'll
install several Python packages throughout the development process of our three
applications. To manage these packages, we'll use the Python package manager pip.
If you've developed in Python without a package manager until now, you'll love
how easy it is to download, install, remove, and update packages using pip. If you
already use it, then skip to the next step where we'll use it to install Flask.

The pip manager is included in Python's 3.4+ and 2.7.9+ versions. For older versions
of Python, pip needs to be installed. To install pip on Ubuntu, open a terminal and
run the following command:

sudo apt-get update

sudo apt-get install python-pip

Chapter 1

[3]

To install pip on Windows or OS X, you can download and run the
get-pip.py file from the pip homepage at https://pip.pypa.
io/en/latest/installing/#install-or-upgrade-pip.

That's it! You can now easily install any Python package you need through pip.

Installing Flask
Installing Flask through pip could not be more straightforward. Simply run
the following:

pip install –-user flask

You might see some warnings in your terminal, but at the end, you should also see
Successfully installed Flask. Now, you can import Flask into a Python program just
as with any other library.

If you're used to using VirtualEnv for Python development, you can
install Flask inside a VirtualEnv environment. We will discuss this
further in Appendix, A Sneak Peek into the Future.

Writing "Hello, World!"
Now, we'll create a basic web page and serve it using Flask's built-in server to
localhost. This means that we'll run a web server on our local machine that we can
easily make requests to from our local machine. This is very useful for development
but not suited for production applications. Later on, we'll take a look at how to serve
Flask web applications using the popular Apache web server.

Writing the code
Our application will be a single Python file. Create a directory in your home directory
called firstapp and a file inside this called hello.py. In the hello.py file, we'll write
code to serve a web page comprising the static string "Hello, World!". The code looks
as follows:

from flask import Flask

app = Flask(__name__)

https://pip.pypa.io/en/latest/installing/#install-or-upgrade-pip
https://pip.pypa.io/en/latest/installing/#install-or-upgrade-pip

Hello, World!

[4]

@app.route("/")
def index():
 return "Hello, World!"

if __name__ == '__main__':
 app.run(port=5000, debug=True)

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address
and password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the

code files.
• Choose from the drop-down menu where you purchased

this book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Let's break down what this does. The first line should be familiar; it simply imports
Flask from the package flask. The second line creates an instance of the Flask object
using our module's name as a parameter. Flask uses this to resolve resources, and in
complex cases, one can use something other than __name__ here. For our purposes,
we'll always use __name__, which links our module to the Flask object.

Line 3 is a Python decorator. Flask uses decorators for URL routing, so this line of
code means that the function directly below it should be called whenever a user
visits the main root page of our web application (which is defined by the single
forward slash). If you are not familiar with decorators, these are beautiful Python
shortcuts that seem a bit like black magic at first. In essence, they call a function that
takes the function defined under the decorator (in our case, index()) and returns a
modified function.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[5]

The next two lines should also seem familiar. They define a very simple function
that returns our message. As this function is called by Flask when a user visits our
application, the return value of this will be what is sent in response to a user who
requests our landing page.

Line 6 is a Python idiom with which you are probably familiar. This is a simple
conditional statement that evaluates to True if our application is run directly.
It is used to prevent Python scripts from being unintentionally run when they
are imported into other Python files.

The final line kicks off Flask's development server on our local machine. We set it to
run on port 5000 (we'll use port 80 for production) and set debug to True, which
will help us see detailed errors directly in our web browser.

Running the code
To run our development web server, simply fire up a terminal and run the hello.py
file. If you used the same structure outlined in the previous section, the commands
will be as follows:

cd firstapp/hello

python hello.py

You should get an output similar to that in the following screenshot:

Also, you should see the process continue to run. This is our web server listening for
requests. So, let's make a request!

Fire up a web browser—I use Firefox, which comes packaged with Ubuntu—and
navigate to localhost:5000.

The localhost part of the URL is a shortcut to the loopback address, usually
127.0.0.1, which asks your computer to make the web request to itself. The number
after the colon (5000) is the port it should make the request to. By default, all HTTP
(web) traffic is carried over port 80. For now, we'll use 5000 as it is unlikely to
conflict with any existing services, but we'll change over to port 80 in production,
which is conventional, so that you won't have to worry about the colon.

Hello, World!

[6]

You should see the "Hello, World!" string displayed in your browser as in the
following screenshot. Congratulations, you've built your first web application
using Flask!

Deploying our application to production
It's great to have an application that runs, but inherent to the idea of a web
application is the idea that we want others to be able to use it. As our application
is Python-based, we are a bit limited in how we can run our application on a web
server (many traditional web hosts are only configured to run PHP and/or .NET
applications). Let's consider how to serve Flask applications using a Virtual Private
Server (VPS) running Ubuntu Server, Apache, and WSGI.

From this point on, we'll maintain two environments. The first is our development
environment, which we just set up and where we'll write code and view its results
using the Flask server running on localhost (as we just did). The second will be
a production environment. This will be a server to which we can deploy our web
applications and make them accessible to the world. When we install new Python
libraries or other software on our development environment, we'll normally want to
mirror our actions in the production environment.

Setting up a Virtual Private Server
Although you could, in theory, host your web application on your local machine and
allow others to use it, this has some severe limitations. First of all, every time you
turned off your computer, your app would not be available. Also, your computer
probably connects to the Internet via an Internet Service Provider (ISP) and possibly
a wireless router. This means that your IP address is dynamic and changes regularly,
which makes it difficult for your applications' users to keep up! Finally, chances are
that you have an asymmetrical connection to the Internet, which means that your
upload speed is slower than your download speed.

Chapter 1

[7]

Hosting your application on a server solves all of these problems. Before "the cloud"
became popular, the traditional way to host a web application was to buy a physical
server and find a data center to host it. These days, things are far simpler. In a few
minutes, you can fire up a virtual server, which to you seems just like a physical
server—you can log in to it, configure it, and enjoy full control over it—but it is
actually just a virtual "piece" of a machine owned and controlled by a cloud provider.

At the time of writing, major players in the cloud provider field include Amazon
Web Services, Microsoft Azure, Google Cloud Compute, and Digital Ocean. All of
these companies allow you to hire a virtual server or servers upon paying by the
hour. If you are learning Flask as a hobby and are unwilling to pay anyone to host
your web applications, you'll probably find a free trial at one of the providers quite
easily. The smallest offering by any provider is fine to host all the applications that
we'll run.

Select one of the preceding providers or another of your choosing. If you've never
done anything similar before, Digital Ocean is often cited to have the simplest
process of signing up and creating a new machine. Once you select a provider,
you should be able to follow their respective instructions to fire up a VPS that runs
Ubuntu Server 14.04 and SSH into it. You'll have full control over the machine with
one slight difference: you won't have a display or a mouse.

You'll enter commands on your local terminal, which will in fact be run on the
remote machine. Detailed instructions on how to connect to your VPS will be
given by the provider, but if you use Ubuntu, it should be as simple as running
the following:

ssh user@123.456.789.000

Alternatively, if you set it up with a public-private key authentication, where
yourkey.pem is the full path to your private key file, here's the command to run:

ssh user@123.456.78.000 –i yourkey.pem

Here, user is the default user on the VPS, and yourkey is the name of your private
key file.

SSH from other operating systems:

SSH from OS X should be the same as Ubuntu, but if you're using
Windows, you'll have to download PuTTY. Refer to http://www.
putty.org/ to download and for full usage instructions. Note that
if you use key files for authentication, you'll have to convert them to a
format compatible with PuTTY. A conversion tool can also be found on
the PuTTY website.

http://www.putty.org/
http://www.putty.org/

Hello, World!

[8]

Once we connect to the VPS, installing Flask is the same process as it was previously:

sudo apt-get update

sudo apt-get install python-pip

pip install --user Flask

To install our web server, Apache, and WSGI, we will run the following:

sudo apt-get install apache2

sudo apt-get install libapache2-mod-wsgi

Apache is our web server. It will listen for web requests (which are generated by
our users visiting our web application using their browsers) and hand these requests
over to our Flask application. As our application is in Python, we also need WSGI
(Web Server Gateway Interface).

This is a common interface between web servers and Python applications, which
allows Apache to talk to Flask and vice versa. An overview of the architecture can
be seen in the following diagram:

Configuring our server
Now that we've installed Apache, we can see our first results. You're probably used
to visiting websites using a URL, such as http://example.com. We'll access our web
applications using the IP address of our VPS directly. Your VPS should have a static
public address. Static means that it doesn't change periodically, and public means
that it is globally unique. When you connected to the VPS via SSH, you probably
used the public IP to do this. If you can't find it, run the following on your VPS and
you should see an inet addr section in the output, which contains your public IP:
ifconfig

Chapter 1

[9]

The IP address should look similar to 123.456.78.9. Enter your IP address into your
browser's address bar, and you should see a page saying "Apache2 Ubuntu Default
Page: It Works!" or something similar, as in the following screenshot:

This means that we can now serve web content to anyone with an Internet
connection! However, we still have to:

• Copy our code to the VPS
• Link up Apache and Flask
• Configure Apache to serve our Flask application

For the first step, we'll set up a Git repository on our local machine and clone the
repository to the VPS. For the second step, we'll use the WSGI module that we installed
with Apache. Finally, we'll take a look at how to write a virtual host to have Apache
serve our Flask application by default.

Installing and using Git
Git is a version control system. A version control system, among other things, saves
multiple versions of our code base automatically. This is great to undo accidental
changes or even deletions; we can simply revert to a previous version of our code.
It also includes lots of functionality for distributed development—that is, many
developers working on a single project. We'll use it mainly for its backup and
deployment features, however.

To install Git on your local machine and VPS, run the following commands on each:

sudo apt-get update

sudo apt-get install git

Hello, World!

[10]

Make sure you're comfortable with the difference between running
commands on your own machine using the terminal and on your
server through the SSH connection. In many cases, we'll need to run
the same commands twice—once for each environment.

Now that you have the software, you need a place to host your Git repositories or
"repos". Two popular and free Git hosting services are GitHub (http://github.
com) and Bitbucket (http://bitbucket.org). Head over to one of them, create an
account, and create a new repository by following the instructions that they provide.
When given the option to give your repository a name, call it firstapp to match
the name of the directory that we will use for our code base. Once you create a new
repository, you should be given a unique URL to your repository. Take note of this
as we'll use it to push our Hello, World! application using git and then deploy it to
our VPS.

On your local machine, open a terminal and change the directory to the Flask
application. Initialize a new repository and link it to your remote Git repository
via the following commands:

cd firstapp

git init

git remote add origin <your-git-url>

Tell git who you are, to allow it to automatically add metadata to your code
changes, as follows:

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

Git allows you full control over which files are part of your repository and which
aren't. Even though we initialized the Git repo in our firstapp directory, our repo
currently contains no files. Add our application to the repo, commit, and then push
it, as follows:

git add hello.py

git commit -m "Initial commit"

git push -u origin master

http://github.com
http://github.com
http://bitbucket.org

Chapter 1

[11]

These are the main Git commands that we'll use throughout this book, so let's take
a brief look at what each does. The add command adds new or modified files to
our repository. This tells Git which files are actually part of our project. Think of
the commit command as taking a snapshot of our project in its current state. This
snapshot is saved on our local machine. It is good to make a new commit with any
major change to the code base as we can easily revert to previous commits if a later
commit breaks our application. Finally, the push command pushes our local changes
to the remote Git server. This is good for backup, and it will also allow us to fetch the
changes on our VPS, thus keeping the code base on our local machine and that on
our VPS in sync.

Now, SSH into your VPS again and get a copy of our code, as follows:

cd /var/www

git clone <your-git-url>

Where the <your-git-url> part of the above command
is actually a placeholder for the URL to your Git repository.

If you get a permission denied error on trying to clone the Git repository, you
might need to take ownership of the /var/www directory for the Linux user that
you're using. If you logged into the server with tom@123.456.789.123, you can
run the following command, which will give your user ownership of /var/www and
allow you to clone the Git repository into it. Again tom is the placeholder used in the
following case:

sudo chown -R tom /var/www

If you used firstapp as a name for your remote repository, this should create a new
directory called firstapp. Let's verify that our code is there using the following:

cd firstapp

ls

You should see your hello.py file. Now, we need to configure Apache to use WSGI.

Serving our Flask app with WSGI
First, we'll create a very straightforward .wsgi file in our application directory.
Then, we'll create an Apache configuration file in the directory where Apache looks
for available sites.

Hello, World!

[12]

The only slightly tricky part about these two steps is that we'll create the files directly
on our VPS, and as our VPS does not have a display, this means that we have to use
command-line interface text editors. Of course, we could create the files locally and
then transfer them to our VPS as we did for our code base, but for small changes
to configuration files, this is often more effort than it's worth. Using a text editor
without a mouse takes a bit of getting used to, but it's a good skill to learn. The
default text editor on Ubuntu is Nano, and the other popular choices are vi or Vim.
Some people use Emacs. If you already have a favorite, go with it. If not, we'll use
Nano for the examples in this book (it is already installed and arguably the simplest
to use). However, if you want to go the extra mile, I recommend learning to use Vim.

Assuming you're still connected to your VPS and have navigated to the /var/www/
firstapp directory as in the most recent steps, run the following command:

nano hello.wsgi

This creates the hello.wsgi file, which you can now edit through Nano. Type the
following:

import sys

sys.path.insert(0, "/var/www/firstapp")

from hello import app as application

This is simply Python syntax, which patches our application into the PATH system
so that Apache can find it through WSGI. We will then import app (we named this
in our hello.py app with the app = Flask(__name__) line) into the namespace.

Hit Ctrl + X to exit Nano and enter Y when prompted to save the changes.

Now, we'll create an Apache configuration file that points to the .wsgi file we just
created, as follows:

cd /etc/apache2/sites-available

nano hello.conf

If you run into permission issues while editing or saving files, you may
need to take ownership of the apache2 directory too. Run the following
command, substituting the username for your Linux user:
sudo chown –R tom /etc/apache2

In this file, we'll create a configuration for an Apache virtual host. This will
allow us to serve multiple sites from a single server, which will be useful later
when we want to serve other applications using our single VPS. In Nano, enter
the following configuration:

Chapter 1

[13]

<VirtualHost *>
 ServerName example.com

 WSGIScriptAlias / /var/www/firstapp/hello.wsgi
 WSGIDaemonProcess hello
 <Directory /var/www/firstapp>
 WSGIProcessGroup hello
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

This might look quite complicated, but it's actually very straightforward. We will
create a virtualhost and specify our domain name, where our .wsgi script is, the
name of our application, and who is allowed to access it. We'll discuss domain names
in the final chapter, but for now, you can just leave it as example.com because we'll
access our application by its IP address.

If you get stuck on this step, the Flask website has a great resource on
configuring and troubleshooting Apache configuration. You can find it at
http://flask.pocoo.org/docs/0.10/deploying/mod_wsgi/.

Hit Ctrl + X and enter Y when prompted again to save and exit the file.
Now, we need to enable the configuration and set it as our default site.

Configuring Apache to serve our Flask application
Apache sites work as follows: there is a sites-available directory (where we
created the new virtual host configuration file) and a sites-enabled directory,
which contains shortcuts to all the configuration files that we want to be active.
By default, you'll see a file in the sites-available directory named 000-default.
conf. This is the reason that we saw a default It works Apache page when we
first installed Apache. We don't want this anymore; instead, we want to use our
application as the default site. Therefore, we'll disable the default Apache site,
enable our own, and then restart Apache for the changes to take effect. Run these
commands to do this:

sudo a2dissite 000-default.conf

sudo a2ensite hello.conf

sudo service apache2 reload

example.com
http://flask.pocoo.org/docs/0.10/deploying/mod_wsgi/

Hello, World!

[14]

The required Apache configuration and commands can vary quite
a bit based on the platform you're using. If you use Ubuntu Server
as recommended, the preceding should all work smoothly. If not,
you may need to read up a bit on how to configure Apache for
your specific platform.

You should note reloading web server apache2 in the output. If errors are
displayed, then you probably misconfigured something in the preceding command.
If this is the case, read the error message carefully and go back over the previous
steps to take a look at why things didn't work as expected.

To test that everything is working, open a web browser on your local machine and
type your IP address into the address bar again. You should see Hello, World!
displayed in your browser instead of the default Apache page that we saw before.

If you get Error 500 instead, it means that our application fell over for some reason.
Fear not; it's better that you get used to dealing with this error now, when the fix
will probably be simple, than later on, when we've added more components that
could break or be misconfigured. To find out what went wrong, run the following
command on your VPS:

sudo tail –f /var/log/apache2/error.log

The tail command simply outputs the last several lines of the file passed as an
argument. The -f is for follow, which means that the output will be updated if the
file changes. If you can't immediately work out which lines are indicative of the error
we're looking for, visit the site in your web browser on your local machine again,
and you'll see the output from the tail command be updated accordingly. The
following screenshot shows the output from the tail command when there are no
errors; however, if anything goes wrong, you'll see the error output printed among
all the info messages.

Chapter 1

[15]

Some possible tripping points are incorrectly configured WSGI and Apache files
(make sure that your WSGIDaemonProcess and daemon name match, for example) or
incorrectly configured Python (you may forget to install Flask on your VPS). If you
can't figure out what the error message means, an Internet search for the message
(removing the error-specific parts of your app, such as names and paths) will usually
point you in the right direction. Failing this, there are strong and very friendly Flask
and WSGI communities on Stack Overflow and Google Groups, and there's normally
someone willing to help beginners. Remember that if you're having a problem and
can't find an existing solution online, don't feel bad for asking; you'll help countless
people facing issues similar to yours.

Hello, World!

[16]

Summary
We got through quite a lot of material in this first chapter! We did some initial setup
and house-keeping and then wrote our first web application using Flask. We saw
this run locally and then discussed how to use Git to copy our code to a server.
We configured our server to serve our application to the public; however, our
application is merely a static page that prints the "Hello, World!" string to whoever
visits our page. This is not useful to many people and could be achieved more simply
using a static HTML page. However, with the extra effort we put in, we now have all
the power of Python behind our application; we're just not using it yet!

In the next chapter, we'll discover how to take advantage of Python to make our web
applications more useful!

[17]

Getting Started with Our
Headlines Project

Now that our Hello World application is up and running, we have all the groundwork
in place to create a more useful application. Over the next few chapters, we'll create a
Headlines application that displays up-to-date news headlines, weather information,
and currency exchange rates to our users.

In this chapter, we'll introduce RSS feeds and show how to use them to automatically
retrieve recent news articles from specific publications. In the next chapter, we'll
discuss how to use templates to display headlines and summaries of the retrieved
articles to our users. Chapter 4, User Input for Our Headlines Page Project, will show
you how to get input from users so that they can customize their experience and will
also look at how to add weather and currency data to our application. We'll finish
off the project in Chapter 5, Improving the User Experience of Our Headlines Project, by
adding some CSS styles and looking at how to remember our users' preferences from
one visit to the next.

By the end of this chapter, you'll have learned how to create a more complex Flask
application. We'll pull raw data from real-world news stories and build up HTML
formatting to display this to our user. You'll also learn more about routing—that is,
having different URLs trigger different parts of our application's code.

In this chapter, we will cover the following topics:

• Setting up our project and a Git repository
• Creating a new Flask application
• Introduction to RSS and RSS feeds

Getting Started with Our Headlines Project

[18]

Setting up our project and a Git
repository
We could simply edit our Hello World application to add the desired functionality,
but it's cleaner to start a new project. We'll create a new Git repository, a new Python
file, a new .wsgi file, and a new Apache configuration file. We'll do this for each
of the projects in the book, which means that all three of the projects as well as the
original Hello World application will be accessible from our web server.

Setting up is very similar to what we did for our Hello World application in Chapter
1, Hello, World! but we'll briefly go through the steps again as we don't have to repeat
a lot of the configuration and installation, as follows:

1. Log in to your GitHub or BitBucket account and create a new repository
called headlines. Take note of the URL you're given for this blank
repository.

2. On your local machine, create a new directory called headlines in your
home directory or wherever you put the firstapp directory.

3. Create a new file in this directory called headlines.py.
4. In your terminal, change the directory to the headlines directory

and initialize the Git repository by executing the following commands:

cd headlines

git init

git remote add origin <your headlines git URL>

git add headlines.py

git commit -m "initial commit"

git push –u origin master

Now, we're almost ready to push code to our new repository; we just need to
write it first.

Creating a new Flask application
To begin with, we'll create the skeleton of our new Flask application, which is pretty
much the same as our Hello World application. Open headlines.py in your editor
and write the following code:

from flask import Flask

app = Flask(__name__)

Chapter 2

[19]

@app.route("/")
def get_news():
 return "no news is good news"

if __name__ == '__main__':
 app.run(port=5000, debug=True)

This works exactly as before. You can run it in your terminal with python
headlines.py. Open a browser and navigate to localhost:5000 to see the no news
is good news string displayed. However, although the old adage may be true, it's
bad news that our app does not do anything more useful than this. Let's make it
display actual news to our users.

Introduction to RSS and RSS feeds
RSS is an old but still widely used technology to manage content feeds. It's been
around for such a long time that there's some debate as to what the letters RSS
actually stand for, with some saying Really Simple Syndication and others Rich Site
Summary. It's a bit of a moot point as everyone just calls it RSS.

RSS presents content in an ordered and structured format using XML. It has several
uses, with one of the more common uses being for people to consume news articles.
On news websites, news is usually laid out similarly to a print newspaper with more
important articles being given more space and also staying on the page for longer.
This means that frequent visitors to the page will see some content repeatedly and
have to look out for new content. On the other hand, some web pages are updated
only very infrequently, such as some authors' blogs. Users have to keep on checking
these pages to see whether they are updated, even when they haven't changed most
of the time. RSS feeds solve both of these problems. If a website is configured to use
RSS feeds, all new content is published to a feed. A user can subscribe to the feeds of
his or her choice and consume these using an RSS reader. New stories from all feeds
he or she has subscribed to will appear in the reader and disappear once they are
marked as read.

As RSS feeds have a formal structure, they allow us to easily parse the headline,
article text, and date programmatically in Python. We'll use some RSS feeds from
major news publications to display news to our application's users.

Although RSS follows a strict format and we could, with not too much trouble,
write the logic to parse the feeds ourselves, we'll use a Python library to do this.
The library abstracts away things such as different versions of RSS and allows
us to access the data we need in a completely consistent fashion.

Getting Started with Our Headlines Project

[20]

There are several Python libraries that we could use to achieve this. We'll select
feedparser. To install it, open your terminal and type the following:

pip install --user feedparser

Now, let's go find an RSS feed to parse! Most major publications offer RSS feeds, and
smaller sites built on popular platforms, such as WordPress and Blogger, will often
have RSS included by default as well. Sometimes, a bit of effort is required to find
the RSS feed; however, as there is no standard as to where it should be located, you'll
often see the RSS icon somewhere on the homepage (look at the headers and footers),
which looks similar to this:

Also, look for links saying RSS or Feed. If this fails, try going to site.com/rss or
site.com/feed, where site.com is the root URL of the site for which you're looking
for RSS feeds.

We'll use the RSS feed for the main BBC news page. At the time of writing, it is
located at http://feeds.bbci.co.uk/news/rss.xml. If you're curious, you can
open the URL in your browser, right-click somewhere on the page, and click on
View Source or an equivalent. You should see some structured XML with a format
similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
 <channel>
 <title>FooBar publishing</title>
 <link>http://dwyer.co.za</link>
 <description>A mock RSS feed</description>
 <language>en-gb</language>
 <item>
 <title>Flask by Example sells out</title>
 <description>Gareth Dwyer's new book,
 Flask by Example sells out in minutes</description>
 <link>http://dwyer.co.za/book/news/flask-by-example</link>
 <guid isPermalink="false">http://dwyer.co.za/book/news/
 flask-by-example</guid>
 <pubDate>Sat, 07 Mar 2015 09:09:19 GMT</pubDate>
 </item>
 </channel>
</rss>

site.com/rss
site.com/feed
http://feeds.bbci.co.uk/news/rss.xml

Chapter 2

[21]

At the very top of the feed, you'll see a line or two that describes the feed itself, such
as which version of RSS it uses and possibly some information about the styles. After
this, you'll see information relating to the publisher of the feed followed by a list of
<item> tags. Each of these represents a story—in our case, a news article. These items
contain information such as the headline, a summary, the date of publication, and a
link to the full story. Let's get parsing!

Using RSS from Python
In our headlines.py file, we'll make modifications to import the feedparser
library we installed, parse the feed, and grab the first article. We'll build up HTML
formatting around the first article and show this in our application. If you're not
familiar with HTML, it stands for Hyper Text Markup Language and is used to
define the look and layout of text in web pages. It's pretty straightforward, but if it's
completely new to you, you should take a moment now to go through a beginner
tutorial to get familiar with its most basic usage. There are many free tutorials online,
and a quick search should bring up dozens. A popular and very beginner-friendly
one can be found at http://www.w3schools.com/html/.

Our new code adds the import for the new library, defines a new global variable for
the RSS feed URL, and further adds a few lines of logic to parse the feed, grab the
data we're interested in, and insert this into some very basic HTML. It looks similar
to this:

import feedparser

from flask import Flask

app = Flask(__name__)

BBC_FEED = "http://feeds.bbci.co.uk/news/rss.xml"

@app.route("/")
def get_news():
 feed = feedparser.parse(BBC_FEED)
 first_article = feed['entries'][0]
 return """<html>
 <body>
 <h1> BBC Headlines </h1>
 {0}

 <i>{1}</i>

http://www.w3schools.com/html/

Getting Started with Our Headlines Project

[22]

 <p>{2}</p>

 </body>
</html>""".format(first_article.get("title"), first_article.
get("published"), first_article.get("summary"))

if __name__ == "__main__":
 app.run(port=5000, debug=True)

The first line of this function passes the BBC feed URL to our feedparser library,
which downloads the feed, parses it, and returns a Python dictionary. In the second
line, we grabbed just the first article from the feed and assigned it to a variable.
The entries entry in the dictionary returned by feedparser contains a list of all
the items that include the news stories we spoke about earlier, so we took the first
one of these and got the headline or title, the date or the published field, and
the summary of the article (that is, summary) from this. In the return statement,
we built a basic HTML page all within a single triple-quoted Python string, which
includes the <html> and <body> tags that all HTML pages have as well as an <h1>
heading that describes what our page is; , which is a bold tag that shows the news
headline; <i>, which stands for the italics tag that shows the date of the article; and
<p>, which is a paragraph tag to show the summary of the article. As nearly all items
in an RSS feed are optional, we used the python.get() operator instead of using
index notation (square brackets), meaning that if any information is missing, it'll
simply be omitted from our final HTML rather than causing a runtime error.

For the sake of clarity, we didn't do any exception handling in this example;
however, note that feedparser may well throw an exception on attempting to
parse the BBC URL. If your local Internet connection is unavailable, the BBC server
is down, or the provided feed is malformed, then feedparser will not be able to
turn the feed into a Python dictionary. In a real application, we would add some
exception handling and retry the logic here. In a real application, we'd also never
build HTML within a Python string. We'll look at how to handle HTML properly in
the next chapter. Fire up your web browser and take a look at the result. You should
see a very basic page that looks similar to the following (although your news story
will be different):

Chapter 2

[23]

This is a great start, and we're now serving dynamic content (that is, content that
changes automatically in response to user or external events) to our application's
hypothetical users. However, ultimately, it's not much more useful than the static
string. Who wants to see a single news story from a single publication that they have
no control over?

To finish off this chapter, we'll look at how to show an article from different
publications based on URL routing. That is, our user will be able to navigate to
different URLs on our site and view an article from any of several publications.
Before we do this, let's take a slightly more detailed look at how Flask handles
URL routing.

URL routing in Flask
Do you remember that we briefly mentioned Python decorators in the previous
chapter? They're represented by the funny @app.route("/") line we had above
our main function, and they indicate to Flask which parts of our application should
be triggered by which URLs. Our base URL, which is usually something similar to
site.com but in our case is the IP address of our VPS, is omitted, and we will specify
the rest of the URL (that is, the path) in the decorator. Earlier, we used a single slash,
indicating that the function should be triggered whenever our base URL was visited
with no path specified. Now, we will set up our application so that users can visit
URLs such as site.com/bbc or site.com/cnn to choose which publication they
want to see an article from.

The first thing we need to do is collect a few RSS URLs. At the time of writing,
all of the following are valid:

• CNN: http://rss.cnn.com/rss/edition.rss
• Fox News: http://feeds.foxnews.com/foxnews/latest
• IOL: http://www.iol.co.za/cmlink/1.640

First, we will consider how we might achieve our goals using static routing. It's by
no means the best solution, so we'll implement static routing for only two of our
publications. Once we get this working, we'll consider how to use dynamic routing
instead, which is a simpler and more generic solution to many problems.

Instead of declaring a global variable for each of our RSS feeds, we'll build a Python
dictionary that encapsulates them all. We'll make our get_news() method generic
and have our decorated methods call this with the relevant publication. Our
modified code looks as follows:

import feedparser
from flask import Flask

site.com/bbc
site.com/cnn
http://rss.cnn.com/rss/edition.rss
http://feeds.foxnews.com/foxnews/latest
http://www.iol.co.za/cmlink/1.640

Getting Started with Our Headlines Project

[24]

app = Flask(__name__)

RSS_FEEDS = {'bbc': 'http://feeds.bbci.co.uk/news/rss.xml',
 'cnn': 'http://rss.cnn.com/rss/edition.rss',
 'fox': 'http://feeds.foxnews.com/foxnews/latest',
 'iol': 'http://www.iol.co.za/cmlink/1.640'}

@app.route("/")
@app.route("/bbc")
def bbc():
 return get_news('bbc')

@app.route("/cnn")
def cnn():
 return get_news('cnn')

def get_news(publication):
 feed = feedparser.parse(RSS_FEEDS[publication])
 first_article = feed['entries'][0]
 return """<html>
 <body>
 <h1>Headlines </h1>
 {0} </ br>
 <i>{1}</i> </ br>
 <p>{2}</p> </ br>
 </body>
</html>""".format(first_article.get("title"), first_article.
get("published"), first_article.get("summary"))

if __name__ == "__main__":
 app.run(port=5000, debug=True)

Common mistakes:

If you're copying or pasting functions and editing the @app.route
decorator, it's easy to forget to edit the function name. Although
the name of our functions is largely irrelevant as we don't call them
directly, we can't have different functions share the same name as the
latest definition will always override any previous ones.

Chapter 2

[25]

We still return the BBC news feed by default, but if our user visits the CNN or BBC
routes, we will explicitly take the top article from respective publication. Note that
we can have more than one decorator per function so that our bbc() function gets
triggered by a visit to our base URL or to the /bbc path. Also, note that the function
name does not need to be the same as the path, but it is a common convention that
we followed in the preceding example.

Following this, we can see the output for our application when the user visits
the /cnn page. The headline displayed is now from the CNN feed.

Now that we know how routing works in Flask, wouldn't it be nice if it could
be even simpler? We don't want to define a new function for each of our feeds.
What we need is for the function to dynamically grab the right URL based on the
path. This is exactly what dynamic routing does.

In Flask, if we specify a part of our URL path in angle brackets < >, then it is taken
as a variable and is passed to our application code. Therefore, we can go back to
having a single get_news() function and pass in a <publication> variable, which
can be used to make the selection from our dictionary. Any variables specified by the
decorator must be accounted for in our function's definition. The first few lines of the
updated get_news() function are shown as follows:

@app.route("/")
@app.route("/<publication>")
def get_news(publication="bbc"):
 # rest of code unchanged

In the code shown earlier, we added <publication> to the route definition. This
creates an argument called publication, which we need to add as a parameter of
the function directly below the route. Thus, we can keep our default value for the
publication parameter as bbc, but if the user visits CNN, Flask will pass the cnn
value as the publication argument instead.

Getting Started with Our Headlines Project

[26]

The rest of the code remains unchanged, but it's important to delete the now unused
bbc() and cnn() function definitions as we need the default route to activate our
get_news() function instead.

It's easy to forget to catch the URL variables in the function definition. Any dynamic
part of the route must contain a parameter of the same name in the function in order
to use the value, so look out for this. Note that we gave our publication variable a
default value of bbc so that we don't need to worry about it being undefined when
the user visits our base URL. However, again, our code will throw an exception if
the user visits any URL that we don't have as a key in our dictionary of feeds. In a
real web application, we'd catch cases such as this and show an error to the user, but
we'll leave error handling for later chapters.

Publishing our Headlines application
This is as far as we'll take our application in this chapter. Let's push the results to
our server and configure Apache to display our headlines application instead of our
Hello World application by default.

First, add your changes to the Git repository, commit them, and push them to
the remote. You can do this by running the following commands (after opening
a terminal and changing directory to the headlines directory):

git add headlines.py

git commit –m "dynamic routing"

git push origin master

Then, connect to the VPS with SSH and clone the new project there using the
following commands:

ssh –i yourkey.pem root@123.456.789.123

cd /var/www

git clone https://<yourgitrepo>

Don't forget to install the new library that we now depend on. Forgetting to install
dependencies on your server is a common error that can lead to a frustrating
debugging. Keep this in mind. The following is the command for this:

pip install --user feedparser

Chapter 2

[27]

Now, create the .wsgi file. I assume that you named your Git project headlines
when creating the remote repository and that a directory named headlines
was created in your /var/www directory when you did the preceding Git clone
command. If you called your project something else and now have a directory with
a different name, rename it to headlines (otherwise, you'll have to adapt a lot of the
configuration we're about to do accordingly). To rename a directory in Linux, use the
following command:

mv myflaskproject headlines

The command used earlier will rename the directory called myflaskproject to
headlines, which will ensure that all the configuration to follow will work. Now,
run the following:

cd headlines

nano headlines.wsgi

Then, insert the following:

import sys
sys.path.insert(0, "/var/www/headlines")
from headlines import app as application

Exit Nano by hitting the Ctrl + X key combo and enter Y when prompted to
save changes.

Now, navigate to the sites-available directory in Apache and create the new
.conf file using the following commands:

cd /etc/apache2/sites-available

nano headlines.conf

Next, enter the following:

<VirtualHost *>
 ServerName example.com

 WSGIScriptAlias / /var/www/headlines/headlines.wsgi
 WSGIDaemonProcess headlines
 <Directory /var/www/headlines>
 WSGIProcessGroup headlines
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Getting Started with Our Headlines Project

[28]

Save the file and quit nano. Now, disable our old site, enable the new one, and restart
Apache by running the following commands:

sudo a2dissite hello.conf

sudo a2enssite headlines.conf

sudo service apache2 reload

Try and visit the IP address of your VPS from your local machine, and if all
went as expected, you should see the news headline as before! If not, don't worry.
It's easy to make a mistake in some piece of configuration. It's most likely that your
headlines.wsgi or headlines.conf file has a small error. The easiest way to find
this is by looking at the most recent errors in your Apache error log, which would
have been triggered when you attempted to visit the site. View this again with the
following command:

sudo tail –fn 20 /var/log/apache2/error.log

Summary
That's it for this chapter. The major takeaways of this chapter were taking a look at
how routing, both static and dynamic, are handled in Flask. You also learned a fairly
messy way of formatting data using HTML and returning this to the user.

In the next chapter, we'll take a look at cleaner ways to separate our HTML code
from our Python code using Jinja templates. We'll also have our app display more
than a single news story.

[29]

Using Templates in Our
Headlines Project

In the last chapter, we saw one way of combining static HTML with dynamic content
for creating a web page. But it's messy, and we don't want to hack away at Python
strings for building our web pages. Mixing HTML and Python is not ideal for a few
reasons: for one, it means if we ever want to change static text, such as that which
appears in our headings, we have to edit our Python files, which also involves
reloading these files into Apache. If we hire frontend developers to work on HTML,
we run the risk of them breaking the unfamiliar Python code by mistake, and it's
far more difficult to structure any other frontend code such as JavaScript and CSS
correctly. Ideally, we should aim for complete segregation between the frontend and
backend components. We can achieve this to a large extent using Jinja, but as with
most aspects of life, some compromise will be necessary.

By the end of this chapter, we'll have extended our application to display more than
a single headline for the chosen publication. We'll display several articles for each
publication, each one having a link to the original article, and our logic and view
components will largely be separated. In this chapter, we'll cover the following topics:

• Introducing Jinja
• Basic use of Jinja templates
• Advanced use of Jinja templates

Using Templates in Our Headlines Project

[30]

Introducing Jinja
Jinja is a Python template engine. It allows us to easily define dynamic blocks of
HTML which are populated by Python. HTML templates are useful even for static
websites which have multiple pages. Usually, there are some common elements,
such as headers and footers, on every page. Although it is possible to maintain each
page individually for static websites, this requires that a single change be made in
multiple places if the change is made to a shared section. Flask was built on top of
Jinja, so although it is possible to use Jinja without Flask, Jinja is still an inherent part
of Flask, and Flask provides several methods to work directly with Jinja. Generally,
Flask assumes nothing about the structure of your application except what you tell
it, and prefers providing functionality through optional plugins. Jinja is somewhat of
an exception to this. Flask gives you Jinja by default, and assumes that you store all
your Jinja templates in a subdirectory of your application named templates.

Once we've created templates, we'll make calls from our Flask app to render these
templates. Rendering involves parsing the Jinja code, inserting any dynamic data,
and creating pure HTML to be returned to a user's browser. All of this is done
behind the scenes though, so it can get a bit confusing as to what is being done
where. We'll take things one step at a time.

Basic use of Jinja templates
The first step to using Jinja templates is creating a directory in our application to
contain our template files, so navigate to your headlines directory, and create a
directory called templates. Unlike the previous steps, this name is expected by
other parts of the application and is case sensitive, so take care while creating it.
At the most basic level, a Jinja template can just be an HTML file, and we'll use
the .html extension for all our Jinja templates. Create a new file in the templates
directory called home.html. This will be the page that our users see when visiting our
application, and will contain all the HTML that we previously had in a Python string.

We'll only be using Jinja to build HTML files in this book, but Jinja
is flexible enough for use in generating any text-based format.
Although we use the .html extension for our Jinja templates, the
files themselves will not always be pure HTML.

For now, put the following static HTML code into this file. We'll look at how to pass
dynamic data between Python and our templates in the next step.

<html>
 <head>
 <title>Headlines</title>

Chapter 3

[31]

 </head>
 <body>
 <h1>Headlines</h1>
 title

 <i>published</i>

 <p>summary</p>
 </body>
</html>

Now in our Python code, instead of building up the string and returning that in our
routing function, we'll render this template and return it. In headlines.py, add an
import at the top:

from flask import render_template

The render_template function is the magic which takes a Jinja template as input
and produces pure HTML, capable of being read by any browser, as the output.
For now, some of the magic is lost, as we'll give it pure HTML as input and view
the same as output in our browser.

Rendering a basic template
In your get_news() function, remove the return statement, which contains our
triple-quoted HTML string as well. Leave the previous lines which grab the data
from feedparser, as we'll be using that again soon.

Update the return statement, so that the get_news() function now looks as follows:

@app.route("/")
@app.route("/<publication>"
def get_news(publication="bbc"):
 feed = feedparser.parse(RSS_FEEDS[publication])
 first_article = feed['entries'][0]
 return render_template("home.html")

Although our current HTML file is pure HTML and not yet using any of the Jinja
syntax that we'll see later, we're actually already doing quite a bit of magic. This call
looks in our templates directory for a file named home.html, reads this, parses any
Jinja logic, and creates an HTML string to return to the user. Once you've made both
the preceding changes, run your application again with python headlines.py, and
navigate to localhost:5000 in your browser.

Using Templates in Our Headlines Project

[32]

Again, we've gone a step backwards in order to advance. If you run the app and
view the result in your browser now, you should see something similar to our
original page, except that instead of the real news data, you'll just see the strings
title, published, and summary as seen in the following image:

Let's take a look at how to populate these fields inside our render_template call so
that we can see real news content again.

Passing dynamic data to our template
First, in our Python file, we'll pass each of these as named variables. Update the
get_news() function again, and pass all the data that you need to display to the
user as arguments to render_template(), as follows:

@app.route("/")
@app.route("/<publication>"
def get_news(publication="bbc"):
 feed = feedparser.parse(RSS_FEEDS[publication])
 first_article = feed['entries'][0]
 render_template("home.html",
 title=first_article.get("title"),
 published=first_article.get("published"),
 summary=first_article.get("summary"))

The render_template function takes the filename of the template as its first
argument, and can then take an arbitrary number of named variables as subsequent
arguments. The data in each of these variables will be available to the template, using
the variable name.

Chapter 3

[33]

Displaying dynamic data in our template
In our home.html file, we simply need to put two braces on either side of our
placeholders. Change it to look like the following:

<html>
 <head>
 <title>Headlines</title>
 </head>
 <body>
 <h1>Headlines</h1>
 {{title}}

 <i>{{published}}</i>

 <p>{{summary}}</p>
 </body>
</html>

Double braces, {{ }}, indicate to Jinja that anything inside them should not be taken
as literal HTML code. Because our placeholders, title, published, and summary, are
the same as our Python variable names passed into the render_template call, just
adding the surrounding braces means that the render_template call will substitute
these for the real data, returning a pure HTML page. Try it out to make sure that we
can see real news data again, as seen in the following image:

Advanced use of Jinja templates
Now we have perfect separation of our backend and frontend components, but our
application doesn't do anything more than it did before. Let's take a look at how to
display multiple news articles from a selected publication. We don't want to add
three new arguments to our render_template call for each article (or dozens of
additional arguments if we ever decide that we want to display more than just the
title, date, and summary of an article).

Using Templates in Our Headlines Project

[34]

Fortunately, Jinja can take over some of the logic from Python. This is where we have
to be careful: we spent all that effort to separate our logic and view components, and
when we discover how powerful the Jinja language actually is, it's tempting to move
a lot of the logic into our template files. This would leave us back where we started
with code that is difficult to maintain. However, in some cases it's necessary for our
frontend code to handle some logic, such as now where we don't want to pollute our
backend code with too many repeated arguments.

Using Jinja objects
The first thing to learn is how Jinja handles objects. All of the basic Python data
structures, such as variables, objects, lists, and dictionaries, can be understood by
Jinja and can be processed in a very similar way to what we are used to in Python.
For example, instead of passing each of the three components of our article separately
to our template, we could have passed in the first_article object and dealt with
the separation in Jinja. Let's see how to do that. Change the Python code to pass in
a single-named argument to render_template, that is first_article, and the
frontend code to grab the bits we need from this.

The render_template call should now look like this:

render_template("home.html", article=first_article)

The template now has a reference called article, which we can use to get the same
result as before. Change the relevant part of the home.html to read as follows:

{{article.title}}

<i>{{article.published</i>

<p>{{article.summary}}</p>

Note that accessing items from a dictionary is slightly different in Jinja as compared
to Python. We use a full stop to access properties, so to access the title of the article,
we use {{article.title}} as in the preceding example, instead of the Python
equivalent article["title"] or article.get("title"). Our code is again neater,
but yet again has no additional functionality.

Adding looping logic to our template
Without much extra effort, we can make the whole list of articles available to Jinja.
In the Python code, change the render_template call to read as follows:

render_template("home.html", articles=feed['entries'])

Chapter 3

[35]

You can remove the line directly above the preceding one in the code which defines
the first_article variable, as we won't need it any more. Our template now has
access to the full list of articles that we fetch through feedparser.

In our Jinja template, we could now add {{articles}} or {{articles[0]}} to
see a full dump of all the information we're now passing, or just a dump of the first
article respectively. You can try this as an intermediate step if you're curious, but in
our next step we'll be looping through all the articles and displaying the information
we want.

By giving our template more data to work with, we're passing along some of the
logic responsibility that should ideally be handled by our Python code, but we can
also deal with this very cleanly in Jinja. Similar to the way we use double braces,
{{ }}, to indicate variables, we use the brace and percentage combination, {% %},
to indicate control logic. This will be clearer by looking at an example. Change the
<body> part of the template code to read as follows:

<body>
 <h1>Headlines</h1>
 {% for article in articles %}
 {{article.title}}

 <i>{{article.published}}</i>

 <p>{{article.summary}}</p>
 <hr />
 {% endfor %}
</body>

We can see that the Jinja for loop is similar to Python. It loops through the articles list
that we've passed in from the Python code, and creates a new variable, article, for
each iteration of the loop, each time referring to the next item in the list. The article
variable can then be used like any other Jinja variable (using the double braces).
Because whitespace in Jinja is irrelevant, unlike Python, we must define where
our loop ends with the {% endfor %} line. Finally, the <hr /> in HTML creates a
horizontal line which acts as a separator between each article.

Using Templates in Our Headlines Project

[36]

Run the application locally with the new template file, and view the results in your
browser. You should see something similar to the following image:

Adding hyperlinks to our template
Now we want to link each headline to the original article. Our user will probably
find this useful—if a headline seems interesting, he or she can easily get to the full
text of the article to read it. The owner of the RSS feed will also often require or
request that anyone who uses the feed links back to the original articles. (Again,
check for terms and conditions as published along with most big feeds.) Because
we're passing the whole article object to our template already, we won't need to
make any further changes to our Python code to achieve this; we simply need to
make use of the extra data already available to us.

In the template file, search for the following:

{{article.title}}

Change this line to the following:

{{article.title}}

Chapter 3

[37]

If you're new to HTML, then there's quite a bit going on here. Let's pull it apart: the
<a> tag in HTML indicates a hyperlink (usually displayed by default as blue and
underlined in most browsers), the href attribute specifies the destination or URL of
the link, and the link ends with the tag. That is, any text between <a> and
will be clickable, and will be displayed differently by our user's browser. Note that
we can use the double braces to indicate a variable even within the double quotation
marks used to define the destination attribute.

If you refresh the page in your browser, you should now see the headlines as bold
links, as in the following image, and clicking on one of the links should take you to
the original article.

Pushing our code to the server
Now is a good time to push the code to our VPS. This is the last time we'll break
down the steps of how to do this, but hopefully, you'd be familiar enough with
Git and Apache by now that there won't be anything unexpected. On your local
machine, from the headlines directory, run:

git add headlines.py

git add templates

git commit -m "with Jinja templates"

git push origin master

Using Templates in Our Headlines Project

[38]

And on your VPS (SSH into it as usual), change to the appropriate directory, pull the
updates from the Git repository, and restart Apache to reload the code:

cd /var/www/headlines

git pull

sudo service apache2 reload

Make sure everything has worked by visiting the IP address of your VPS from the
web browser on your local machine and checking that you see the same output that
we saw locally, as seen in the following image:

Summary
We now have a basic news summary site! You can display recent news from a
number of different websites, see the headline, date, and summary for each recent
article, and can click on any headline to visit the original article. You've only seen a
tiny sample of the power of the Jinja language though—as we expand this project
and other projects in future chapters, you'll see how it can be used for inheritance,
conditional statements, and more.

In the next chapter, we'll add weather and currency information to our application,
and look at ways to interact with our users.

[39]

User Input for Our Headlines
Project

Remember how we allowed the user to specify the publication to be viewed by
using <variable> parts in our URL? Although we were effectively getting input
from our user, it's a way of retrieving input that has some pretty heavy limitations.
Let's look at some more powerful ways to interact with our users, and add some
more useful information to our application. We'll be making quite a few incremental
changes to our code files from here on, so remember that you can always refer to the
accompanying code bundle if you need an overview at any point.

In this chapter, we'll look at some more flexible and powerful ways to get input.
We'll also bump into some more advanced Git features along the way, and take a
moment to explain how to use them.

We'll cover the following topics in this chapter:

• Getting user input using HTTP GET
• Getting user input using HTTP POST
• Adding weather and currency data

Getting user input using HTTP GET
HTTP GET requests are the simplest way of retrieving input from the user.
You might have noticed question marks in URLs while browsing the Web.
When submitting a term in the search box on the website, your search term
will usually appear in the URL, and look something like this:

example.com/search?query=weather

User Input for Our Headlines Project

[40]

The bit after the question mark represents a named GET argument. The name
is query and the value, weather. Although arguments like these are usually
automatically created through HTML input boxes, the user can also manually
insert them into the URL, or they can be part of a clickable link that is sent to the
user. HTTP GET is designed to get limited, non-sensitive information from the
user in order for the server to return a page as requested by the GET arguments.
By convention, GET requests should never modify the server state in a way that
produces side effects, that is, the user should be able to make exactly the same
request multiple times and always be given exactly the same results.

GET requests are, therefore, ideal for allowing our user to specify which publication
to view. Let's extend our Headlines project to incorporate selecting a headline based
on a GET request. First, let's modify the Python code to do the following:

• Import the request context from Flask
• Remove the dynamic URL variable
• Check to see if the user has entered a valid publication as a GET argument
• Pass the user query and the publication to the template

Update the headlines.py file as follows:

import feedparser
from flask import Flask
from flask import render_template
from flask import request

app = Flask(__name__)

RSS_FEEDS = {'bbc': 'http://feeds.bbci.co.uk/news/rss.xml',
 'cnn': 'http://rss.cnn.com/rss/edition.rss',
 'fox': 'http://feeds.foxnews.com/foxnews/latest',
 'iol': 'http://www.iol.co.za/cmlink/1.640'}

@app.route("/")
def get_news():
 query = request.args.get("publication")
 if not query or query.lower() not in RSS_FEEDS:
 publication = "bbc"
 else:
 publication = query.lower()
 feed = feedparser.parse(RSS_FEEDS[publication])
 return render_template("home.html",
 articles=feed['entries']

Chapter 4

[41]

if __name__ == "__main__":
 app.run(port=5000, debug=True)

The first new change is a new import for Flask's request context. This is another piece
of Flask magic that makes our life easier. It provides a global context which our code
can use to access information about the latest request made to our application. This
is useful for us, because the GET arguments that our user passes along as part of a
request are automatically available in request.args, from which we can access
key-value pairs as we would with a Python dictionary (although it is immutable).
The request context simplifies some other parts of request handling as well, which
means that we don't have to worry about threads or the ordering of requests.
You can read more about how the request context works, and what it does, at the
following website:

http://flask-cn.readthedocs.org/en/latest/reqcontext/

We check to see if this has the publication key set by using the get() method,
which returns None. if the key doesn't exist. If the argument is there, we make sure
that the value is valid (that is, it is accounted for by our RSS_FEEDS mapping), and if
it is, we return the matching publication.

We can test out the code by visiting our URL followed by the get argument, for
example: localhost:5000/?publication=bbc. Unfortunately, from our user's
experience, we've made the application less user-friendly, instead of more. Why did
we do this? It turns out that our user doesn't have to modify the URL by hand—with
a very small change, we can have the URL arguments populated automatically so
that the user doesn't have to touch the URL at all. Modify the home.html template,
and add the following HTML below the heading:

<form>
 <input type="text" name="publication" placeholder="search" />
 <input type="submit" value="Submit" />
</form>

This is quite straightforward, but let's pick it apart to see how it all works. First we
create an HTML form element. By default, this will create an HTTP GET request
when submitted, by passing any inputs as GET arguments into the URL. We have
a single text input which has the name publication. This name is important as the
GET argument will use this. The placeholder is optional, but it will give our user a
better experience as the browser will use it to indicate what the text field is intended
for. Finally, we have another input of type submit. This automatically creates a nice
Submit button for our form which, when pressed, will grab any text in the input and
submit it to our Python backend.

http://flask-cn.readthedocs.org/en/latest/reqcontext/

User Input for Our Headlines Project

[42]

Save the template, and reload the page to see how it works now. You should see the
input form at the top of the page, as seen in the following screenshot. We've gained
a lot of functionality for four lines of HTML, and now we can see that, although GET
arguments initially looked like they were creating more mission and admin, they
actually make our web application much simpler and more user-friendly.

Getting user input using HTTP POST
The alternative to HTTP GET is HTTP POST, and it may not always be immediately
obvious which one to use. HTTP POST is used to post larger chunks of data or
more sensitive data to the server. Data sent through POST requests is not visible in
the URL, and although this does not make it inherently more secure (it does not by
default provide encryption or validation), it does offer some security advantages.
URLs are often cached by the browser and suggested through autocomplete features
next time the user types in a similar URL.

Chapter 4

[43]

Data sent through GET requests may, therefore, be retained. Using POST also
prevents someone from seeing the data by looking over the user's shoulder (shoulder
surfing). Passwords especially are often obscured on input by using HTML password
fields, making them appear as asterisks (********) or dots (••••••••) in the browser.
The data would still be clearly visible in the URL if sent using GET however, and so
POST should always be used instead.

Although our search query is hardly confidential or excessively long, we're going
to take a moment now to see how we'd implement the same functionality using
POST instead of GET. If you just want to get ahead with finishing off our Headlines
application, feel free to skip this section, but keep in mind that we'll be using POST
requests in later projects without extended explanation. Once we're done with the
POST example, we'll revert our application to the state it is currently in (using the
GET request), as this is much more suitable for our use case.

Creating a branch in Git
To make a change to our code base that we're not sure if we want, we'll use
Git's branch functionality. Think of a branch as being like a fork in a road, except
we can at any time change our mind and go back to the decision point. First, we need
to make sure our current branch (master) is up to date—that all our local changes
are committed. Open a terminal, and run the following commands from the
headlines directory:

git add headlines.py

git add templates/home.html

git commit -m "Using GET"

git push origin master

We don't strictly need to push it to the server—Git keeps a full revision history locally,
and our changes would still be theoretically safe without the push. However, our code
is in a working state, so there's no harm making the backup to remote. Now we're
going to create the new branch and switch to using it to make our next set of changes:

git branch post-requests

git checkout post-requests

We're now working in a new branch of our codebase. Usually, we'd eventually
merge this branch back into our master branch, but in our case, we'll just abandon it
once we're done with what we need. It's quite hard to visualize what's happening as
Git does most things behind the scenes, so it's worth reading up about Git if you're
interested, and are likely to use it for future projects. Otherwise, just think of this as
a checkpoint so that we can freely experiment without the worry of messing up
our code.

User Input for Our Headlines Project

[44]

Adding POST routes in Flask
To use a POST request, we need to make some small changes to our Python
and HTML code. In the headlines.py file, make the following changes:

• Change request.args.get to request.form.get
• Change @app.route("/") to @app.route("/", methods=['GET',

'POST'])

The reason for the first change is that we are now grabbing the user data from a form,
so Flask automatically makes this available to us in request.form. This works the
same way as request.get except that it gathers data from POST requests instead of
from GETs. The second change is not quite as obvious. What we haven't mentioned
before is that all route decorators can specify how the function can be accessed: either
through GET requests, POST requests, or both. By default, only GET is permitted, but
we now want our default page to be accessible by either GET (when we just visit the
home main page and are given BBC as a default), or POST (for when we've requested
the page through our form with the additional query data). The methods parameter
accepts a list of HTTP methods which should be permitted to access that particular
route of our application.

Making our HTML form use POST
Our template needs similar changes. Change the opening <form> tag in the
home.html file to read:

<form action="/" method="POST">

Just as with Flask, HTML forms use GET by default, so we have to explicitly define
that we want to use POST instead. The action attribute isn't strictly necessary, but
usually, when we use POST, we redirect users to a confirmation page or similar, and
the URL for the following page would appear here. In this case, we're explicitly saying
that we want to be redirected to the same page after our form has been submitted.

Save the changes to the Python and HTML files, and refresh the page in your
browser to see the changes take effect. The functionality should be exactly the
same except that we don't see any data in the URL. This can be cleaner for many
applications, but in our case, it is not what we want. For one, we'd like the search
term to be cached by our users' browsers. If a user habitually makes a query for FOX,
we want the browser to be able to autocomplete this after he begins typing in the
URL for our application. Furthermore, we'd like our users to be able to easily share
links that include the query.

Chapter 4

[45]

If a user (let's call him Bob) sees a bunch of interesting headlines after typing cnn
into our application, and wants to share all of these headlines with another user
(Jane), we don't want Bob to have to message Jane, telling her to visit our site, and
type a specific query into the search form. Instead, Bob should be able to share a URL
that allows Jane to directly visit the page exactly as he saw it (for example, example.
com/?publication=cnn). Jane can simply click on the link sent by Bob and view the
same headlines (assuming she visits our page before the RSS feed is updated).

Reverting our Git repository
We need to revert the code to how we had it before. Because all the changes in the
previous section were made in our experimental post-request branch, we don't need
to manually re-edit the lines we changed. Instead, we'll commit our changes to this
branch, and then switch back to our master branch, where we'll find everything as
we left it. In your terminal, run the following:

git add headlines.py

git add templates/home.html

git commit –m "POST requests"

git checkout master

Open the headlines.py and templates/home.html files to be sure, but they should
be exactly as we left them before experimenting with POST!

Adding weather and currency data
Now let's add some more functionality. We're showing media headlines from three
different sources, but our user is probably interested in more than current affairs.
We're going to see how easy it is to display the current weather and some exchange
rates at the top of the page. For the weather data, we'll be using the OpenWeatherMap
API, and for currency data, we'll be using Open Exchange Rates. At the time of writing,
these APIs are freely available, although they both require registration.

User Input for Our Headlines Project

[46]

Introducing the OpenWeatherMap API
In your web browser, visit the URL http://api.openweathermap.org/data/2.5/
weather?q=London,uk&units=metric&appid=cb932829eacb6a0e9ee4f38bfbf112
ed. You should see something that looks similar to the following screenshot:

This is the JSON weather data for London which is designed to be read automatically
instead of by humans. Before looking at how to go about reading this data into our
Headlines application, note that the URL we visited has an appid parameter. Even
though the weather data is provided for free, every developer who accesses the data
needs to sign up for a free account with OpenWeatherMap, and get a unique API key
to pass as the value for the appid parameter. This is to prevent people from abusing
the API by making too many requests, and hogging the available bandwidth. At the
time of writing, OpenWeatherMap allows 60 calls to the API per minute and 50,000
per day as part of their free access plan, so it's unlikely that we'll be hitting these
limits for our project.

Signing up with OpenWeatherMap
You should sign up for your own API key instead of using the one published in
this book. Generally, your API key should remain a secret, and you should avoid
sharing it (especially avoid publishing it in a book). To get your own API key, head
over to www.openweathermap.org , and complete their sign-up progress by clicking
the sign-up link at the top of the page. Fill out an e-mail address, username, and
password. The registration page should look similar to the following screenshot:

http://api.openweathermap.org/data/2.5/weather?q=London,uk&units=metric&appid=cb932829eacb6a0e9ee4f38bfbf112ed
http://api.openweathermap.org/data/2.5/weather?q=London,uk&units=metric&appid=cb932829eacb6a0e9ee4f38bfbf112ed
http://api.openweathermap.org/data/2.5/weather?q=London,uk&units=metric&appid=cb932829eacb6a0e9ee4f38bfbf112ed
www.openweathermap.org

Chapter 4

[47]

Retrieving your OpenWeatherMap API key
Once you've signed up, you'll be able to log into OpenWeatherMap. You can the find
your personal API key by navigating to home.openweathermap.org and scrolling
down to the API key text box. You should see your API key as indicated by the red
rectangle in the following image:

Copy the key to your clipboard, as we'll be using it in our Python code soon.

home.openweathermap.org

User Input for Our Headlines Project

[48]

Parsing JSON with Python
Now we can access structured weather data over HTTP by using a URL. But doing
so in our browser isn't much good, as we want to read this data automatically from
our Python code. Luckily, Python has a bunch of useful standard libraries for exactly
this use case!

Introducing JSON
JSON is a structured data format very similar to a Python dictionary, as should be
apparent from the preceding sample. In fact, in this case it's identical, and we could
very simply convert it to a Python dictionary to use in our Flask application by
loading it as a string and running the built-in Python eval function on it. However,
JSON is not always identical to a Python dictionary. For example, it uses true and
false instead of True and False (note the case difference)—and passing anything
that we don't have full control over to eval() is generally a bad idea. Therefore,
we'll use the Python json library to safely parse it. We'll also use the Python
urllib2 library to download the data from the web, and the Python urllib library
to correctly encode URL parameters.

Retrieving and parsing JSON in Python
For retrieving and parsing JSON in Python, the first step is to add the three new
imports that we need to our headlines.py file:

import json
import urllib2
import urllib

Style tip:

For good Python style, keep the imports ordered alphabetically.
You can read more about the conventions for ordering imports
at the following site: https://www.python.org/dev/peps/
pep-0008/#imports

Now add a new function, get_weather(), which will make a call to the weather API
with a specific query. It's pretty straightforward, and looks like the following code.
Replace the <your-api-key-here> placeholder with the API key that you copied
from the OpenWeatherMap page.

def get_weather(query):
 api_url = http://api.openweathermap.org/data/2.5/
 weather?q={}&units=metric&appid=<your-api-key-here>

https://www.python.org/dev/peps/pep-0008/#imports
https://www.python.org/dev/peps/pep-0008/#imports

Chapter 4

[49]

 query = urllib.quote(query)
 url = api_url.format(query)
 data = urllib2.urlopen(url).read()
 parsed = json.loads(data)
 weather = None
 if parsed.get("weather"):
 weather = {"description":
 parsed["weather"][0]["description"],
 "temperature":parsed["main"]["temp"],
 "city":parsed["name"]
 }
 return weather

We use the same URL we looked at earlier in our browser, but we make the query
part-configurable so that the city for which we retrieve the weather data is dynamic.
We use urllib.quote() on the query variable, as URLs cannot have spaces in them,
but the names of the cities that we want to retrieve weather for may contain spaces.
The quote() function handles this for us by, for example, translating a space to "%20
", which is how spaces are represented in URLs. Then we load the data over HTTP
into a Python string by using the urllib2 library. As in our feedparsing example,
downloading data over the Internet is always potentially unstable, and for a real-world
application, we would need to add some exception handling, and retry logic here.

We then use the json library's loads() function (load string) to convert the JSON string
that we downloaded into a Python dictionary. Finally, we manually build up a simpler
Python dictionary based on the JSON one returned by the API, as OpenWeatherMap
supplies a whole bunch of attributes that we don't need for our application.

Using our weather code
Now make two small changes to the get_news() function in order to use our
get_weather() function. We need to call the get_weather() function (for now
we'll just pass in London as a constant), and then pass the weather data to our
template. The get_news() function should now look as follows:

@app.route("/")
def get_news():
 query = request.args.get("publication")
 if not query or query.lower() not in RSS_FEEDS:
 publication = "bbc"
 else:
 publication = query.lower()
 feed = feedparser.parse(RSS_FEEDS[publication])
 weather = get_weather("London,UK")

User Input for Our Headlines Project

[50]

 return render_template("home.html",
 articles=feed["entries"],
 weather=weather)

This now loads the simplified data for London into the weather variable, and passes
it along to our template file so that we can display the data to our users.

Displaying the weather data
Now we just need to adapt our template to account for the extra data. We'll display
the weather data just above the news headlines, and add some level 2 headings to
keep the different sections of our application organized.

Add the following three lines to the home.html template, right after the opening
<h1> tag:

<body>
 <h1>Headlines</h1>
 <h2>Current weather</h2>
 <p>City: {{weather.city}}</p>
 <p>{{weather.description}} |{{weather.temperature}}℃</p>
 <h2>Headlines</h2>

There's nothing here that we haven't seen before. We simply grab the sections we
want out of our weather variable using braces. The funny ℃ part is to display
the symbol for degrees Celsius. If you're one of those people who is able to make
sense of the notion of Fahrenheit, then remove the &units=metric from the API
URL (which will tell OpenWeatherData to give us the temperatures in Fahrenheit),
and display the F symbol for our users by using ℉ in your template instead.

Allowing the user to customize the city
As mentioned earlier, we would not always want to display the weather for London.
Let's add a second search box for city! Searching is usually hard, because data input
by users is never consistent, and computers love consistency. Luckily, the API that
we're using does a really good job of being flexible, so we'll just pass on the user's
input directly, and leave the difficult bit for others to deal with.

Adding another search box to our template
We'll add the search box to our template exactly as before. This form goes directly
under the Current weather heading in the home.html file.

<form>
 <input type="text" name="city" placeholder="weather search">

Chapter 4

[51]

 <input type="submit" value="Submit">
</form>

The form defined in the preceding code snippet simply uses a named text input
and a submit button, just like the one we added for the publication input.

Using the user's city search in our Python code
In our Python code, we need to look for the city argument in the GET request. Our
get_news() function is no longer well-named, as it does more than simply getting
the news. Let's do a bit of refactoring. Afterwards, we'll have a home() function that
makes calls to get the news and the weather data (and later on the currency data),
and our get_news() function will again only be responsible for getting news. We're
also going to have quite a few defaults for different things, so instead of hard-coding
them all, we'll add a DEFAULTS dictionary as a global, and whenever our code can't
find information in the GET arguments, it'll fall back to getting what it needs from
there. The changed parts of our code (excluding the imports, global URLs, and the
main section at the end) now look like this:

...

DEFAULTS = {'publication':'bbc',
 'city': 'London,UK'}

@app.route("/")
def home():
 # get customized headlines, based on user input or default
 publication = request.args.get('publication')
 if not publication:
 publication = DEFAULTS['publication']
 articles = get_news(publication)
 # get customized weather based on user input or default
 city = request.args.get('city')
 if not city:
 city = DEFAULTS['city']
 weather = get_weather(city)
return render_template("home.html", articles=articles,
weather=weather)

def get_news(query):
 if not query or query.lower() not in RSS_FEEDS:
 publication = DEFAULTS["publication"]
 else:
 publication = query.lower()
 feed = feedparser.parse(RSS_FEEDS[publication])

User Input for Our Headlines Project

[52]

 return feed['entries']

def get_weather(query):
 query = urllib.quote(query)
 url = WEATHER_URL.format(query)
 data = urllib2.urlopen(url).read()
 parsed = json.loads(data)
 weather = None
 if parsed.get('weather'):
 weather =
 {'description':parsed['weather'][0]['description'],
 'temperature':parsed['main']['temp'],
 'city':parsed['name']
 }
 return weather

Now we have a good separation of concerns—our get_weather() function gets
weather data, our get_news() function gets news, and our home() function combines
the two and handles the user's input to display customized data to our visitors.

Checking our new functionality
If all went well, we should now have a site that displays customizable news and
weather data. The weather search, as mentioned, is pretty flexible. Give it a go with
some different inputs—you should see a page similar to the following image:

Chapter 4

[53]

Handling duplicate city names
The OpenWeatherMap API handles duplicate city names well, although the defaults
are sometimes a bit counter-intuitive. For example, if we search for Birmingham,
we'll get the one in the USA. If we want to look for the Birmingham in the UK,
we can search for Birmingham, UK. In order to not confuse our viewers, we'll
make a small modification for displaying the country next to the city. Then they'll
immediately be able to see if they get results for a city different from what they were
expecting. If you examine the full API response from our weather call, you'll find the
country code listed under sys—we'll grab that, add it to our custom dictionary, and
then display it in our template.

In the get_weather function, modify the line where we build the dictionary:

weather = {'description': parsed['weather'][0]['description'],
 'temperature': parsed['main']['temp'],
 'city': parsed['name'],
 'country': parsed['sys']['country']
 }

And in our template, modify the line where we display the city to read as follows:

<p>City: {{weather.city}}, {{weather.country}}</p>

Check that its working – if you restart the application and reload the page, you
should see that typing Birmingham into to the Current weather search box now
displays the country code next to the city name.

User Input for Our Headlines Project

[54]

Currency
Currency data is considered more valuable than weather data. Many commercial
services offer APIs that are frequently updated and very reliable. However, the free
ones are a bit rare. One service that offers a limited API for free is Open Exchange
Rates—and again, we need to register a free account to get an API key.

Getting an API key for the Open Exchange
Rates API
Head over to openexchangerates.com, and complete their registration process.
After clicking on the Sign up link, it may look like they only have paid plans, as
these are more prominently displayed. However, underneath the large paid plan
options, there is a single line of text describing their free offering with a link to select
it. Click on this, and enter your details.

If you are not automatically redirected, head over to your dashboard on their site,
and you'll see your API key (App ID) displayed. Copy this, as we'll need to add it
to our Python code. You can see an example of where to find your API key in the
following screenshot:

openexchangerates.com

Chapter 4

[55]

Using the Open Exchange Rates API
The currency API returns JSON just like the weather API, so we can integrate it into
our Headlines application very easily. We need to add the URL as a global, and then
add a new function to calculate rates. Unfortunately, the free version of the API is
restricted to returning all the major currencies against the United States Dollar, so we
will have to calculate our own approximate rates for conversions not involving the
dollar, and rely on a perfect market to keep our information as accurate as possible
(see http://en.wikipedia.org/wiki/Triangular_arbitrage).

Add the variable CURRENCY_URL to your globals below the existing WEATHER_URL,
as seen in the following code snippet. You'll need to substitute your own App ID.

WEATHER_URL =
"http://api.openweathermap.org/data/2.5/weather?q={}
&units=metric&APPID=<your-api-key-here>"
CURRENCY_URL =
"https://openexchangerates.org//api/latest.json?
app_id=<your-api-key-here>"

Add the get_rates() function as follows:

def get_rate(frm, to):
 all_currency = urllib2.urlopen(CURRENCY_URL).read()

 parsed = json.loads(all_currency).get('rates')
 frm_rate = parsed.get(frm.upper())
 to_rate = parsed.get(to.upper())
 return to_rate/frm_rate

Note the calculation that we do at the end. If the request was from USD to any of the
other currencies, we could simply grab the correct number from the returned JSON.
But in this case, the calculation is simple enough, and it's therefore not worth adding
the extra step of logic to work out if we need to do the calculation or not.

Using our currency function
Now we need to call the get_rates() function from our home() function, and
pass the data through to our template. We also need to add default currencies
to our DEFAULTS dictionary. Make the changes as indicated by the highlighted
code that follows:

DEFAULTS = {'publication':'bbc',
 'city': 'London,UK',
 'currency_from':'GBP',
 'currency_to':'USD'

http://en.wikipedia.org/wiki/Triangular_arbitrage

User Input for Our Headlines Project

[56]

}

@app.route("/")
def home():
 # get customized headlines, based on user input or default
 publication = request.args.get('publication')
 if not publication:
 publication = DEFAULTS['publication']
 articles = get_news(publication)
 # get customized weather based on user input or default
 city = request.args.get('city')
 if not city:
 city = DEFAULTS['city']
 weather = get_weather(city)
 # get customized currency based on user input or default
 currency_from = request.args.get("currency_from")
 if not currency_from:
 currency_from = DEFAULTS['currency_from']
 currency_to = request.args.get("currency_to")
 if not currency_to:
 currency_to = DEFAULTS['currency_to']
 rate = get_rate(currency_from, currency_to)
 return render_template("home.html", articles=articles,
 weather=weather,
 currency_from=currency_from, currency_
to=currency_to, rate=rate)

Displaying the currency data in our template
Finally, we need to modify our template to display the new data. Underneath the
weather section in home.html, add:

<h2>Currency</h2>
1 {{currency_from}} = {{currency_to}} {{rate}}

As always, check that everything is working in your browser. You should see
the default currency data of the British Pound to US Dollar conversion as in the
following image:

Chapter 4

[57]

Adding inputs for the user to select currency
Now we need to add yet another user input to customize which currencies to
display. We could easily add another text search like we did for the previous two,
but this gets messy. We need two bits of input from the user: the from currency and
the to currency. We could add two inputs, or we could ask the user to enter both into
the same input, but the former makes our page pretty cluttered, and the latter means
we need to worry about properly splitting the user input data (which is almost
certainly not consistent). Instead, let's look at a different input element, the HTML
select. You've almost certainly seen these on other web pages—they're drop-down
menus with a list of values that the user can choose from. Let's see how to build them
in HTML, and how to grab the data from them in Flask.

User Input for Our Headlines Project

[58]

Creating an HTML select drop-down element
First, let's hard-code four currencies in each drop-down menu. The code should be
inserted right below the Currency heading in the home.html template, and it looks
like this:

<form>
 from: <select name="currency_from">
 <option value="USD">USD</option>
 <option value="GBP">GBP</option>
 <option value="EUR">EUR</option>
 <option value="ZAR">ZAR</option>
 </select>

 to: <select name="currency_to">
 <option value="USD">USD</option>
 <option value="GBP">GBP</option>
 <option value="EUR">EUR</option>
 <option value="ZAR">ZAR</option>
 </select>
 <input type="submit" value="Submit">
</form>

The name used for the GET request argument is an attribute of the select tag itself
(similar to the name attribute used in our <input type="text"> tags). In our case,
these are currency_from and currency_to, which we specified in our Python code
earlier. The value is slightly more tricky—we have the value that's passed in our GET
request (for example, currency_from=EUR), and then the value that is displayed
to the user. In this case, we'll use the same for both—the currency code—but this is
not compulsory. For example, we could use the full name of the currency, such as
United States Dollar, in the display value, and the code in the value that's passed in
the request. The argument value is specified as an attribute of the option tags, each
a child of <select>. The display value is inserted between the opening and closing
<option> and </option> tags.

Test this out to make sure it's working, by saving the template and reloading the
page. You should see drop-down inputs appear, as in the following image:

Chapter 4

[59]

Adding all the currencies to the select input
Of course, we could do what we did in the preceding section for the full list. But
we're programmers, not data capturers, so we'll make the list dynamic, insert the
options using a for loop, and keep our template up-to-date and clean. To get the
list of currencies, we can simply take the keys of our JSON all_currency object, in
order to make our get_rate() function return a tuple—the calculated rate and the
list of currencies. We can then pass the (sorted) list to our template, which can loop
through them and use them to build the drop-down lists. The changes for this are
shown as follows:

Make the following changes in the home() function:

 if not currency_to:
 currency_to=DEFAULTS['currency_to']
 rate, currencies = get_rate(currency_from, currency_to)
 return render_template("home.html", articles=articles,
 weather=weather,
 currency_from=currency_from, currency_to=currency_to,
 rate=rate,
 currencies=sorted(currencies))

User Input for Our Headlines Project

[60]

In the get_rate() function:

frm_rate = parsed.get(frm.upper())
to_rate = parsed.get(to.upper())
return (to_rate / frm_rate, parsed.keys())

And in the home.html template:

 <h2>Currency</h2>
 <form>
 from: <select name="currency_from">
 {% for currency in currencies %}
 <optionvalue="{{currency}}">
 {{currency}}</option>
 {% endfor %}
 </select>

 to: <select name="currency_to">
 {% for currency in currencies %}
 <option value="{{currency}}">
 {{currency}}</option>
 {% endfor %}

 </select>
 <input type="submit" value="Submit">
 </form>
 1 {{currency_from}} = {{currency_to}} {{rate}}

Displaying the selected currency in the drop-down
input
After this, we should easily be able to see the exchange rate for any currency we
want. One minor irritation is that the dropdowns always display the top item by
default. It would be more intuitive for our users if they displayed the currently
selected value instead. We can do this by setting the selected="selected" attribute
in our select tag and a simple, one-line Jinja if statement to work out which line to
modify. Change the for loops for the currency inputs in our home.html template to
read as follows:

For the currency_from loop:

{% for currency in currencies %}
 <option value="{{currency}}"
 {{'selected="selected"' if currency_from==currency}}>
 {{currency}}</option>
{% endfor %}

Chapter 4

[61]

For the currency_to loop:

{% for currency in currencies %}
 <option value="{{currency}}"
 {{'selected="selected"' if currency_to==currency}}>
 {{currency}}</option>
{% endfor %}

Reload the application and the page, and you should now be able to select any of
the available currencies from both select inputs, and after the page has loaded with
the desired currency data, the select inputs should automatically display the current
currencies as well, as seen in the following image. After clicking on the select input,
you should also be able to type on your keyboard and select the option based on the
first letters of what you've typed.

We can now see news, weather, and currency data at the same time! You can refer
to the complete code from the code bundle of the chapter.

User Input for Our Headlines Project

[62]

Summary
In this chapter, we've looked at the difference between the HTTP GET and POST
requests, and discussed where it's good to use which. Although we have no good
use for HTTP POST at the moment, we will use it in future projects where we will be
getting login data from our users. Luckily, the explanatory work we did with HTTP
POST is not lost—we also took a look at some more advanced ways that Git can help
us with version control, and our unused code is safely stored in a different branch
of our code repository in case we need to refer back to it later. Last but not least, we
added weather and currency data to our application, and looked at a few different
options for allowing our user to input data into our application. We're nearly done
with our first project!

In the next chapter, we'll do some cosmetic touch-ups, and look at remembering our
users so that they don't have to carry out exactly the same actions every time they
visit our site.

[63]

Improving the User
Experience of Our
Headlines Project

Wealthy business people who have to constantly make a good impression to
keep up profitable relations sometimes employ personal assistants to study their
acquaintances. The PA then stands behind the wealthy person at social events and
whispers a few choice words to him or her about someone who is approaching to
converse. The words have to be succinct but informative, such as "Paul Smith. One
child, Jill. Recently travelled, Mauritius". Now, our business person can pretend that
whoever has approached is a dear friend and talk all about his children and travels
at some length without having the faintest clue of who the person actually is. This
makes other people feel important and liked, and this can help our hypothetical
millionaire become even richer.

Why is this relevant to web applications? Well, we want to do exactly the same thing.
Users of our site who feel important and remembered are more likely to come back,
so we need a digital PA to make the user feel as though we've taken the time and
effort to remember who they are and what they like. We could build a database of
our users to store what currency conversions they usually calculate and which cities'
weather they are interested in and then display these to them by default. The issue
with this strategy is that we'd need them to identify themselves with every visit,
and most users would find the extra step of entering a username, and possibly a
password, tedious and off-putting.

Improving the User Experience of Our Headlines Project

[64]

Enter HTTP cookies. These sly little things will lurk on our users' computers and
act as digital PAs for us when our users make a second visit to our site, giving us
information that we've acquired before but haven't bothered to remember. This
sounds pretty underhand. At one point, the European Union thought this way and
attempted to regulate the use of cookies, but they are everywhere and are simple
and useful, and the regulation attempts were a bit underwhelming (take a look at
http://silktide.com/the-stupid-cookie-law-is-dead-at-last/).

In their simplest form, cookies are simply key-value pairs that we store on our users'
machines and ask their browser to automatically send back to us whenever they visit
our site. The pros of this are that we don't have to keep and maintain a database and
we don't have to explicitly ask users to tell us who they are. However, the cons are
that we don't have control of the information and if a user changes computers, web
browsers, or even just deletes our cookies, we'll no longer be able to identify him or
her. Cookies are, therefore, perfect for an application such as the one we've built; it's
not the end of the world if a user has to click a few times to get back to the media,
currency, and weather information he or she searched for the last time, but it's nice if
we can remember previous choices and display these automatically.

While we're on the topic of user experience (or UX as it's often referred to), our site
looks as though it was made in the 1980s. We'll have a stronger focus on aesthetics in
later chapters, but for now we'll also take a look at how to add some basic layout and
colors to our site. As we're focusing on functionality and simplicity, it'll still be far
from "modern-looking", but we'll add some building blocks to our toolkit that we'll
use more carefully later on. We'll use Cascading Style Sheets (normally just called
CSS) to achieve this. CSS is a great tool to enable a further separation of concerns;
we have already mainly separated our logic (that is, our Python script) from our
content (that is, our HTML templates). Now, we'll take a look at how CSS can help us
separate our formatting (that is, the color, font, layout, and so on) from the rest of our
content, such as the static text in our template files.

Now that we've had an overview of cookies and CSS, we'll get to looking at
implementing them in Flask. This is the final chapter of our first project, and
by the end of it, we'll have a Headlines application that includes cookies and CSS.

In this chapter, we'll look at the following topics:

• Adding cookies to our Headlines application
• Adding CSS to our Headlines application

http://silktide.com/the-stupid-cookie-law-is-dead-at-last/

Chapter 5

[65]

Adding cookies to our Headlines
application
Our application, at this point, has a couple of issues. Let's imagine a user, Bob,
who lives in Seattle. Bob visits our site and sees the defaults for BBC, London, and
conversion of GBP to USD. Bob wants to see the weather for Seattle, so he types
Seattle into the Weather search bar and hits Enter. He glances at the returned
weather and feels pretty depressed that it's cold and raining as usual, so he looks
away from the weather further down the page and sees the BBC headlines. He would
prefer CNN headlines, so he selects this publication from the drop-down menu and
hits Submit. He reads through a couple of headlines before realizing that current
affairs are even duller and more depressing than the weather. So, his eyes move
back to the top of the page again to cheer himself up. He's confused; since changing
his publication preference, the weather has defaulted back to London, where the
weather is even worse! He closes our application and doesn't come back. If he were
to come back, everything would display the defaults again.

The two immediate problems are:

• Not remembering our users' choices even while they stay on our site
• Not remembering our users' choices after they close our site and revisit at a

later stage

Let's fix both of these issues.

Using cookies with Flask
Cookies, as introduced earlier, can be thought of as key-value pairs that we may or
may not receive by default from return visitors. We need to change our app so that
when a user makes choices, we create or update their cookie to reflect these changes,
and when a user requests our site, we check to see whether a cookie exists and read
as much of the unspecified information from this as possible. First, we'll look at how
to set cookies and have our user's browser automatically remember information, and
then we'll look at retrieving the information that we previously used cookies to store.

Improving the User Experience of Our Headlines Project

[66]

Setting cookies in Flask
Flask makes dealing with cookies as easy as ever. First, we need a couple more
imports; we'll use the datetime library from Python to set the lifespan of our
soon-to-exist cookies, and we'll use Flask's make_response() function to create
a response object that we can set cookies on. Add the following two lines to your
imports section in the headlines.py file:

import datetime
from flask import make_response

Earlier, we were simply rendering our template with the custom arguments and then
returning it to our users' web browsers. In order to set cookies, we need an extra
step. First, we'll create a response object with our new make_response() function
and then set our cookie using this object. Finally, we'll return the entire response,
which includes the rendered template and the cookies.

Substitute the last line of our home() function in headlines.py with the
following lines:

response = make_response(render_template("home.html",
 articles=articles,
 weather=weather,
 currency_from=currency_from,
 currency_to=currency_to,
 rate=rate,
 currencies=sorted(currencies)))
expires = datetime.datetime.now() + datetime.timedelta(days=365)
response.set_cookie("publication", publication, expires=expires)
response.set_cookie("city", city, expires=expires)
response.set_cookie("currency_from",
 currency_from, expires=expires)
response.set_cookie("currency_to", currency_to, expires=expires)
return response

This is quite a big change from the simple return statement we had, so let's
break it down a bit. First, we will wrap a make_response() call around our
render_template() call instead of returning the rendered template directly.
This means that our Jinja templates will be rendered, and all the placeholders will
be replaced with the correct values, but instead of returning this response directly to
our users, we will load it into a variable so that we can make some more additions to
it. Once we have this response object, we will create a datetime object with a value
of 365 days from today's date. Then, we will do a series of set_cookie() calls on our
response object, saving all the user's selections (or refreshing the previous defaults)
and setting the expiry time to a year from the time the cookie was set using our
datetime object.

Chapter 5

[67]

Finally, we will return our response object, which contains the HTML for the
rendered template, and our four cookie values. On loading the page, our user's
browser will save the four cookies, and we'll be able to retrieve the values if the
same user visits our application again.

Retrieving cookies in Flask
Remembering the information is not much good if we don't do anything with it.
We now set cookies as the final step before we send a response to our users.
However, we need to check for the saved cookies when a user sends us a request.
If you remember how we got named arguments from Flask's request object, you
could probably guess how to get saved cookies. The following line will get the
cookie named publication if it exists:

request.cookies.get("publication")

This is simple, right? The only tricky part is getting our fallback logic correct.
We still want explicit requests to take the highest priority; that is, if a user enters
text or selects a value from a drop-down menu, this will be what he or she wants
irrespective of what we expect from previous visits. If there is no explicit request,
we will look in the cookies to check whether we can grab a default from there.
Finally, if we still have nothing, we will use our hardcoded defaults.

Writing the fallback logic to check for cookies
Let's just implement this logic for publication first. Add a new if block to
our publication logic in the home() function of headlines.py to make it match
the following:

get customised headlines, based on user input or default
publication = request.args.get("publication")
if not publication:
 publication = request.cookies.get("publication")
 if not publication:
 publication = DEFAULTS["publication"]

Now, we will look in the GET arguments, fall back if necessary on the saved
cookies, and finally fall back on our default value. Let's take a look at this working.
Open your web browser and navigate to localhost:5000. Search for Fox in the
Publication search bar and wait for the page to reload with Fox News headlines.
Now, close your browser, reopen it, and load localhost:5000 again. This time,
you should see the Fox headlines without having to search for them, as in the
following screenshot.

Improving the User Experience of Our Headlines Project

[68]

Note that there is no publication argument in the URL, and yet the headlines
themselves are now from Fox News.

Retrieving the cookies for other data
We have basic cookies working for our publication, but we still want to read the
cookies we potentially saved for weather and currency options. We could simply add
the same if statement to each section of our code, substituting city, currency_from,
and currency_to for publication as relevant, but making the same changes in
many parts of our code is a strong sign that we need to do some refactoring.

Let's create a get_value_with_fallback() function instead that implements our
fallback logic on a more abstract level. Add the new function to the headlines.py
file and call it from the home() function, as shown here:

def get_value_with_fallback(key):
 if request.args.get(key):
 return request.args.get(key)
 if request.cookies.get(key):
 return request.cookies.get(key)

Chapter 5

[69]

 return DEFAULTS[key]

@app.route("/")
def home():
 # get customised headlines, based on user input or default
 publication = get_value_with_fallback("publication")
 articles = get_news(publication)

 # get customised weather based on user input or default
 city = get_value_with_fallback("city")
 weather = get_weather (city)

 # get customised currency based on user input or default
 currency_from = get_value_with_fallback("currency_from")
 currency_to = get_value_with_fallback("currency_to")
 rate, currencies = get_rate(currency_from, currency_to)

 # save cookies and return template
 response = make_response(render_template("home.html",
 articles=articles,
 weather=weather, currency_from=currency_from,
 currency_to=currency_to, rate=rate,
 currencies=sorted(currencies)))
 expires = datetime.datetime.now() +
 datetime.timedelta(days=365)
 response.set_cookie("publication", publication,
 expires=expires)
 response.set_cookie("city", city, expires=expires)
 response.set_cookie("currency_from",
 currency_from, expires=expires)
 response.set_cookie("currency_to",
 currency_to, expires=expires)
 return response

Now, we should be able to submit the forms in any order and have all our
options remembered as we would expect. Also, whenever we visit our site, it will
automatically be configured with our most recently used options. Give it a go!
You should be able to search for currency, weather, and headlines; then, close your
browser; and revisit the site. The inputs you used most recently should appear
by default.

Improving the User Experience of Our Headlines Project

[70]

In the following screenshot, we can see that no arguments are passed in the URL,
and yet we are displaying weather data for Port Elizabeth in South Africa; currency
data from the Chinese Yuan (CNY) to Saint Helena Pound (SHP); and headlines
from Fox News.

Adding CSS to our Headlines application
Our site remains pretty bare. There's a lot of white and some black. Most users prefer
color, animations, borders, margins, and so on. As mentioned before, we're not really
going to focus on aesthetics now, but we'll add some basic colors and styles.

External, internal, and inline CSS
There are a few ways that CSS can be added to a web page. The best way is to keep it
completely separate from the HTML and save it in an external file, which is included
in the HTML in a <link> element. This is sometimes referred to as the external CSS.
The worst way is called inline CSS. Using the inline method, CSS is defined on a per
element basis; this is considered bad practice as any changes to style require trawling
through HTML to find the relevant sections.

Chapter 5

[71]

Furthermore, many elements on a page often have the same or at least related
styles to maintain color schemes and styles throughout the site. Using inline styles,
therefore, often leads to a lot of code repetition, which we know to avoid.

For this project, we'll take a middle ground. We'll keep our CSS defined in our .html
template files, but we'll define it all in a single place. This is because we haven't yet
looked at how Flask handles files by convention, so keeping all our code in one place
is simpler for now.

Adding our first CSS
CSS is quite straightforward; we will describe elements of our page by type, ID,
class, and so on and define a number of properties for these, such as color, layout,
padding, fonts, and so on. CSS is designed to cascade, that is, if we don't specify for
a more specific element, it'll automatically inherit properties defined for a more
general element. We'll go through the CSS itself fairly quickly, so if you've never
heard of it before and would like to know more about it, now is the opportune
moment to take a break and go through some CSS-specific resources. There are a lot
of them online that a quick search will reveal; if you enjoyed the W3Schools HTML
tutorial we mentioned earlier, you can find a similar CSS one here at http://www.
w3schools.com/css/. Alternatively, dive in the deep end with the examples and
brief explanations that follow!

First, let's add a better header to our site. We'll add a tagline beneath our top level
heading, and surround it with a new <div> tag so that we can modify the entire
header in the upcoming CSS. Modify the start of the home.html template to look
as follows:

<div id="header">
 <h1>Headlines</h1>
 <p>Headlines. Currency. Weather.</p>
 <hr />
</div>

The <div> tag doesn't do anything by itself, and you can think of it as a container.
We can use it to group logically related elements into the same element, which is
very useful for CSS as we can then style all of the elements in a <div> tag at once.

CSS should be added into the <head> section of our template inside a <style> tag.
Underneath the <title> tag in our home.html template, add the following code:

<style>
html {
 font-family: "Helvetica";
 background: white;

http://www.w3schools.com/css/
http://www.w3schools.com/css/

Improving the User Experience of Our Headlines Project

[72]

}

body {
 background: lightgrey;
 max-width: 900px;
 margin: 0 auto;
}

#header {
 background: lightsteelblue;
}
</style>

We defined the styles explicitly for three elements: the outer <html> element, the
<body> element, and any element with an id="header" attribute. As all of our
elements are within our <html> element, the font cascades automatically down
everywhere (although it could still be overwritten explicitly by subelements). We
set everything in our body element (which contains all the visible items of the page)
to have a maximum width of 900 pixels. The margin: 0 auto; line means that
there will be no margin at the top and bottom of the body, and an automatic margin
on the left- and right-hand sides. This has the effect of centering everything on the
page. The background: white; and background: lightgrey; lines mean that
we'll have a centered main element with a light grey background inside the larger
window, which is white. Finally, our defined header div will have a lightsteelblue
background. Save the page with the added styles and refresh to see the effect. It
should look similar to the following image:

Chapter 5

[73]

Let's take a look at how we can improve the aesthetics in the next section.

Browsers and caching

Browsers often cache content that doesn't change often locally in order
to display pages more quickly the next time you visit them. This is not
ideal for development as you want to see the changes as you make
them. If your styles don't seem to be doing what you'd expect, clear
your browser's cache and try again. This can be done on most browsers
by pressing Ctrl + Shift + ESC and selecting the relevant options from
the menu that pops up.

Adding padding to our CSS
This is slightly more interesting than black on white, but it's still pretty ugly.
One problem is that the text is right up against the margin of the color without
any breathing room. We can fix this using CSS padding, which moves everything
over from the top, right, bottom, left, or any combination by specified amounts.

We could add padding directly to our <body> tag as we want a nice left-hand side
buffer for all the text. If you try this, you'll see the immediate issue; the padding will
affect everything, including our <div> header and the <hr> tag that separates it from
the rest of our content, which means that there will be a weird stripe of grey that isn't
what we want. We'll fix the issue in a way that you'll soon use for nearly everything
CSS-related—just add more divs! We need a main <div> header around all our
subheadings and an inner header div so that we can pad the text in our header
without padding the background color or the separator.

Adding more styles to our CSS
Add the following sections to your CSS to define left-hand side padding for our main
and inner header divs and update the #header section to include some top padding:

#header {
 padding-top: 5;
 background: lightsteelblue;
}
#inner-header {
 padding-left: 10;
}
#main{
 padding-left: 10;
}

Improving the User Experience of Our Headlines Project

[74]

Adding the div tags to the template file
Now, let's add the divs themselves; the template code in home.html should be
updated to look as follows:

 <body>
 <div id="header">
 <div id="inner-header">
 <h1>Headlines</h1>
 <p>Headlines. Currency. Weather.</p>
 </div>
 <hr />
 </div>
 <div id="main">
 <h2>Current weather</h2>

... [rest of the content code here] ...

 {% endfor %}
 </div>
 </body>

Styling our inputs
This makes the layout a bit more pleasant to look at because the text doesn't look
like it's trying to sneak off the edge. The next major pain point is our input elements,
which are very boring. Let's add some style to them as well. At the bottom of the CSS
we have so far, add the following text:

input[type="text"], select {
 color: grey;
 border: 1px solid lightsteelblue;
 height: 30px;
 line-height:15px;
 margin: 2px 6px 16px 0px;
}
input[type="submit"] {
 padding: 5px 10px 5px 10px;
 color: black;
 background: lightsteelblue;
 border: none;
 box-shadow: 1px 1px 1px #4C6E91;
}
input[type="submit"]:hover{
 background: steelblue;
}

Chapter 5

[75]

The first section styles our text input and select (that is, drop-down) elements. The
text color is grey, it has a border that is of the same color as our heading, and we will
make them a little bit bigger than the default ones we had before using height and
line height. We also need to adjust the margins to make the text fit in the new size
more naturally (if you're curious, leave out the margin line at the bottom of the first
section and look at the result.) The second and third sections are to style our Submit
buttons; one to define how they usually look and the other to define how they look
when the mouse moves over them. Again, save these changes and refresh the page to
see how they look. You should see something similar to the following screenshot:

The final result will still not win any design awards, but at least you've learned
the basics of CSS. One of the most frustrating parts of designing web pages is that
each browser interprets CSS slightly differently (or in some cases, very differently).
Cross-browser testing and validation is every web developer's arch nemesis, and in
later chapters, we'll look at some tools and frameworks that can be used to mitigate
the issues that arise from this potential lack of consistency.

Improving the User Experience of Our Headlines Project

[76]

Summary
We've made our site a bit more user-friendly in this chapter, both in terms of
functionality (by remembering our users' choices through cookies) and aesthetics
(using CSS). We'll come back to both of these topics in later projects, in which we'll
use cookies to allow users to log in and some more advanced CSS. This is the end
of our Headlines project; we have a functioning Headlines application that displays
news, weather, and currency information.

In the next chapter, we'll start building a new project: an interactive crime map.

[77]

Building an Interactive
Crime Map

Our first project notably lacked any sort of long term memory. Although we worked
around the issues using cookies to simulate long-term storage, we also saw the
limitations of these. In this project, we'll build an interactive crime map that allows
users to tag locations with details of witnessed or experienced criminal activities.
As we want to keep the data for the long term and make it available to many users,
we cannot rely on our users' local and temporary storage.

Therefore, the first step to our project will be setting up a MySQL database on our
VPS and linking this to a new Flask web application. We'll use the Google Maps API
to allow users to view our map and add new markers to it (in which each marker
represents a crime).

We'll also have some more advanced user input than in our previous project, allowing
users to filter their view of the map and add fairly complex data to the map. Therefore,
we'll have a stronger focus on input validation and sanitization.

Our goal for the project is a web page containing an interactive map. The user should
be able to submit new crimes by choosing a location for the map and entering a
date, category, and description of the crime. The user should also be able to view
all the previously recorded crimes as icons on the map and more details about any
specific crime by selecting the relevant icon from the map. The point of the map is to
be able to easily view areas with high crime rates as well as to assist investigators in
detecting patterns and trends in crime.

A substantial chunk of this chapter is devoted to setting up a MySQL database on
our VPS and creating a database for the crime data. This will be followed by us
setting up a basic page containing a map and text box. We'll see how to link Flask to
MySQL by storing data entered into the text box in our database.

Building an Interactive Crime Map

[78]

As in the previous project, we'll avoid the frameworks and automation tools that we'd
almost certainly use in a "real-world" project. As we will focus on learning, a lower
level of abstraction is useful. Therefore, we won't be using Object-relational Mapping
(ORM) for our database queries or a JavaScript framework for user input and
interaction. This means that there will be some laborious writing of SQL and vanilla
JavaScript, but it's important to fully understand why the tools and frameworks exist
and what problems they solve, before diving in and using them blindly.

In this chapter, we'll cover:

• Setting up a new Git repository
• Understanding relational databases
• Installing and configuring MySQL on our VPS
• Creating our Crime Map database in MySQL
• Creating a basic database web application

Setting up a new Git repository
We'll create a new Git repository for our new code base as, although some of the
setup will be similar, our new project should be completely unrelated to our first one.
If you need more help with this step, head back to Chapter 1, Hello, World!, and follow
the detailed instructions in the Installing and using Git section. If you feel confident,
check whether you can do this just with the following summary:

• Head over to the website for Bitbucket, GitHub, or whichever hosting
platform you used for the first project. Log in and create a new repository

• Name your repository crimemap and take note of the URL you're given
• On your local machine, fire up a terminal and run the following commands:

mkdir crimemap

cd crimemap

git init

git remote add origin <git repository URL>

We'll leave this repository empty for now as we need to set up a database on
our VPS. Once we have the database installed, we'll come back here to set up
our Flask project.

Chapter 6

[79]

Understanding relational databases
In its simplest form, a relational database management system, such as MySQL, is
a glorified spreadsheet program, such as Microsoft Excel. We use it to store data in
rows and columns. Every row is a "thing" and every column is a specific piece of
information about the "thing" in the relevant row. I put "thing" in inverted commas
because we're not limited to storing objects. In fact, the most common example of
a thing, both in the real world and in explaining databases, is data about people. A
basic database storing information about customers of an e-commerce website could
look something similar to the following:

ID First name Surname E-mail address Telephone
1 Frodo Baggins fbaggins@example.com +1 111 111 1111
2 Bilbo Baggins bbaggins@example.com +1 111 111 1010
3 Samwise Gamgee sgamgee@example.com +1 111 111 1001

If we look from the left to the right in a single row, we will get all the information
about one person. If we look in a single column from the top to the bottom, we will
get one piece of information (for example, an e-mail address) for everyone. Both
can be useful; if we want to add a new person or contact a specific person, we will
probably be interested in a specific row. If we want to send a newsletter to all our
customers, we will just be interested in the e-mail column.

So, why can't we just use spreadsheets instead of databases then? Well, if we take
the example of an e-commerce store further, we will quickly see the limitations. If
we want to store a list of all the items we have on offer, we can create another table
similar to the preceding with columns such as Item name, Description, Price, and
Quantity in stock. Our model continues to be useful; however, now, if we want
to store a list of all the items Frodo has ever purchased, there's no good place to put
the data. We could add 1,000 columns to our customer table (as seen earlier), such
as Purchase 1, Purchase 2, and so on until Purchase 1000, and hope that Frodo
never buys more than 1,000 items. This is neither scalable nor easy to work with.
How do we get the description for the item Frodo purchased last Tuesday? Do we
just store the name item in our new column? What happens with items that don't
have unique names?

Soon, we will realize that we need to think about it backwards. Instead of storing the
items purchased by a person in the Customers table, we need to create a new table
called Orders, and store a reference to the customer in every order. Thus, an order
"knows" which customer it belongs to, but a customer has no inherent knowledge of
which orders belong to him/her.

Building an Interactive Crime Map

[80]

While our model still fits into a spreadsheet at a push, as we grow our data model
and size, our spreadsheet becomes more cumbersome. We need to do complicated
queries, such as "I want to see all items that are in stock, have been ordered at least
once in the last six months, and cost more than $10".

Enter Relational Database Management Systems (RDBMS). They've been around
for decades and are a tried-and-tested way of solving a common problem (such as
storing data with complicated relations in an organized and accessible manner). We
won't touch on their full capabilities in our Crime Map (in fact, we could probably
store our data in a text file if we needed to), but if you're interested in building web
applications, you will need a database at some point. So, let's start small and add the
powerful MySQL tool to our growing toolbox.

I highly recommend that you learn more about databases! If the you experience in
building our current project takes your fancy, go read and learn about databases. The
history of RDBMS is interesting, and the complexities and subtleties of normalization
and database varieties (including NoSQL databases, which we'll see some of in our
next project) deserve more study time than we can devote to them in a book that
focuses on Python web development.

Installing and configuring MySQL on
our VPS
Installing and configuring MySQL is an extremely common task. You can, therefore,
find it in prebuilt images or in scripts that build entire stacks for you. A common
stack is called the LAMP stack, which stands for Linux, Apache, MySQL, and PHP,
and many VPS providers provide a one-click LAMP stack image.

As we will use Linux and have already installed Apache manually, after installing
MySQL, we'll be very close to the traditional LAMP stack; we will just use the P for
Python instead of PHP. In keeping with our goal of "education first", we'll install
MySQL manually, and configure it through the command line instead of installing a
GUI control panel. If you've used MySQL before, feel free to set it up as you see fit.

MySQL and Git

Keep in mind that neither our setup of MySQL nor the data we store
in it is part of our Git repository. Be careful as any mistakes made at
a database level, including misconfiguration or deleting data, will be
harder to undo.

Chapter 6

[81]

Installing MySQL on our VPS
Installing MySQL on our server is quite straightforward. SSH into your VPS and run
the following commands:

sudo apt-get update

sudo apt-get install mysql-server

You should see an interface prompting you for a root password for MySQL.
Enter a password and repeat it where prompted. Once the installation is complete,
you can get a live SQL shell by typing the following:

mysql –p

Then, enter the password you chose earlier when prompted. We could create
a database and schema using this shell, but we'd rather do this through Python;
so, type quit and hit the Enter key to terminate the MySQL shell if you opened it.

Installing Python drivers for MySQL
As we want to use Python to talk to our database, we need to install another package.
There are two main MySQL connectors for Python: PyMySQL and MySQLdb. The
first is preferable from a simplicity and ease-of-use point of view. It is a pure Python
library, which means that it has no dependencies. MySQLdb is a C extension and
therefore has some dependencies, but it is a bit faster in theory. They work very
similarly once installed. We'll use PyMySQL in our examples throughout this chapter.

To install it, run (while still on your VPS) the following command:

pip install --user pymysql

Creating our Crime Map database
in MySQL
Some knowledge of SQL's syntax will be useful for the rest of this chapter, but you
should be able to follow either way. The first thing we need to do is create a database
for our web application. If you're comfortable using a command-line editor, you can
create the following scripts directly on the VPS as this can make them easier to debug
and we won't run them locally. However, developing over an SSH session is far from
ideal; so, I recommend that you write them locally and use Git to transfer them to the
server before running.

Building an Interactive Crime Map

[82]

This may make debugging a bit frustrating, so be extra careful in writing these scripts.
If you want, you can get them directly from the code bundle that comes with this
book. In this case, you simply need to populate the user and password fields in the
dbconfig.py file. correctly, and everything should work.

Creating a database setup script
In the crimemap directory in which we initialized our Git repository at the
beginning of the chapter, create a python file called db_setup.py containing
the following code:

import pymysql
import dbconfig
connection = pymysql.connect(host='localhost',
 user=dbconfig.db_user,
 passwd=dbconfig.db_password)

try:
 with connection.cursor() as cursor:
 sql = "CREATE DATABASE IF NOT EXISTS crimemap"
 cursor.execute(sql)
 sql = """CREATE TABLE IF NOT EXISTS crimemap.crimes (
id int NOT NULL AUTO_INCREMENT,
latitude FLOAT(10,6),
longitude FLOAT(10,6),
date DATETIME,
category VARCHAR(50),
description VARCHAR(1000),
updated_at TIMESTAMP,
PRIMARY KEY (id)
)"""
 cursor.execute(sql);
 connection.commit()
finally:
 connection.close()

Let's take a look at what this code does. First, we imported the PyMySQL library
we just installed. We also imported dbconfig, which we'll create locally in a bit
and populate with the database credentials (we don't want to store these in our
repository). Then, we will create a connection to our database using localhost
(because our database is installed on the same machine as our code) and the
credentials that don't exist yet.

Chapter 6

[83]

Now that we have connection to our database, we can get a cursor. You can think
of a cursor a bit like the blinking object in your word processor that indicates where
text will appear when you start typing. A database cursor is an object that points to a
place in the database where we want to create, read, update, or delete data. Once we
start dealing with database operations, there are various exceptions that could occur.
We'll always want to close our connection to the database, so we will create a cursor
(and do all the subsequent operations) inside a try block with connection.close()
in a finally block (the finally block will get executed whether or not the try
block succeeds).

The cursor is also a resource, so we'll grab one and use it in a with: block so that it'll
automatically be closed when we're done with it. With the setup done, we can start
executing the SQL code.

When we call the cursor.execute() function, the SQL code we will pass in will be
run using the database engine, and the cursor will be populated with results if they
are appropriate. We'll discuss later how we can read and write data using the cursor
and the execute() function.

Creating the database
SQL reads similarly to English, so it's normally quite straightforward to work out what
the existing SQL code does, even if it's a bit trickier to write new code. Our first SQL
statement creates a crimemap database if it doesn't already exist (this means that if we
come back to this script, we can leave this line in without deleting the entire database
every time). We will create our first SQL statement as a string and use the sql variable
to store it. Then, we will execute the statement using the cursor we created.

Looking at our table columns
Now that we know we have a database, we can create a table. The table will store
the data for all the crimes that we record, with each crime in a row of the table.
Therefore, we need several columns. Each column can be seen in our create table
statement along with the type of data that will be stored in this column. To break
these down, we have:

• id: This is a unique number that's automatically recorded for every crime
we have. We don't need to worry too much about this field as MySQL will
automatically insert it for us every time we add new crime data—starting
at 1 and incrementing as required.

• Latitude and longitude: These fields will be used to store the location of each
crime. We will specify (10, 6) after the floats which means that each float
can be up to 10 digits and up to 6 digits can be after the decimal point.

Building an Interactive Crime Map

[84]

• Date: This is the date and time of the crime.
• Category: We will define several categories to classify different types of

crime. This will help in filtering the crimes later. VARCHAR(50) means that
this will be data of variable length and up to 50 characters long.

• Description: This is similar to Category but with a maximum of 1000
characters.

• Updated_at: This is another field that we don't need to worry about. MySQL
will set this to the current time when we insert the data or edit it. This could be
useful if we want to, for example, remove a bunch of data that was inserted by
mistake at a specific time.

Indexing and committing
The last line of our create table query specifies our id column as a primary
key. This means that it'll be indexed (and therefore, we'll be able to find data very
efficiently if we use it when we query our database), and will have various other
useful properties, such as enforced existence and uniqueness.

Once we define this more complicated piece of SQL, we will execute it as well in the
following line. Then, we will commit our changes to the database. Think of this as
saving our changes; if we close the connection without the commit, our changes will
be discarded.

SQL Commit:

Forgetting to commit changes is a common error of SQL beginners.
If you get to a point where your database doesn't behave as expected
and you can't figure out why, check whether you forgot a commit
somewhere in your code.

Using the database setup script
Save our script locally and push it to the repository. Refer to the following
commands in this sequence:

git add db_setup.py

git commit –m "database setup script"

git push origin master

Chapter 6

[85]

SSH to your VPS and clone the new repository to your /var/www directory using
the following commands:

ssh user@123.456.789.123

cd /var/www

git clone <your-git-url>

cd crimemap

Adding credentials to our setup script
Now, we still don't have the credentials that our script relies on. We'll do two things
before using our setup script:

• Create the dbconfig.py file with a database and password
• Add this file to .gitignore to prevent it from being added to our repository

Create and edit the dbconfig.py file directly on your VPS using nano, as follows:

nano dbconfig.py

Then, type the following using the password you chose when you installed MySQL:

db_user = "root"
db_password = "<your-mysql-password>"

Save it by hitting Ctrl + X and entering Y when prompted.

Now, use similar nano commands to create, edit, and save .gitignore, which
should contain the following:

dbconfig.py

*.pyc

The first line prevents our dbconfig file from being added to our Git repository,
which helps prevent an unauthorized use of our database password. The second
line prevents compiled Python files from being added to the repository as these are
simply runtime optimizations and are relevant to our project.

Running our database setup script
With this done, you can run:
python db_setup.py

Assuming everything goes smoothly, you should now have a database with a
table to store crimes. Python will output any SQL errors, allowing you to debug if
necessary. If you make changes to the script from the server, run the same git add,
git commit, and git push commands that you did from your local machine.

Building an Interactive Crime Map

[86]

git status:

You can run git status from the terminal (make sure you are
in your repository directory) to see a summary of the files that are
committed. You could use this now (before git push) to make sure
that you didn't commit the dbconfig file.

This concludes our preliminary database setup! Now, we can create a basic Flask
project that uses our database.

Creating a basic database web
application
We will start by building a skeleton of our Crime Map application. It'll be a basic
Flask application with a single page that:

• Displays all the data in the crimes table of our database
• Allows users to input data and stores this data in the database
• Has a Clear button that deletes all the previously input data

Although what we will store and display can't really be described as crime data
yet, we'll store it in the crimes table that we created earlier. We'll just use the
description field for now, ignoring all the other ones.

The process of setting up the Flask application is very similar to what we did
before. We will separate out the database logic into a separate file, leaving our
main crimemap.py file for the Flask setup and routing.

Setting up our directory structure
On your local machine, change to the crimemap directory. If you created the database
setup script on the server or made any changes to it there, make sure to sync the
changes locally. Then, create the templates directory and touch the files we will use
by running the following commands (or using the GUI file explorer if you prefer):

cd crimemap

git pull origin master

mkdir templates

touch templates/home.html

touch crimemap.py

touch dbhelper.py

Chapter 6

[87]

Looking at our application code
Add the following code to the crimemap.py file. This contains nothing unexpected
and should all be familiar from our Headlines project. The only thing to point out is
the DBHelper() class, which we'll consider the code for next. We will simply create a
global DBHelper instance right after initializing our application and then use it in the
relevant methods to grab data from the database, insert data into the database,
or delete all data from the database:

from dbhelper import DBHelper
from flask import Flask
from flask import render_template
from flask import request

app = Flask(__name__)
DB = DBHelper()

@app.route("/")
def home():
 try:
 data = DB.get_all_inputs()
 except Exception as e:
 print e
 data = None
 return render_template("home.html", data=data)

@app.route("/add", methods=["POST"])
def add():
 try:
 data = request.form.get("userinput")
 DB.add_input(data)
 except Exception as e:
 print e
 return home()

@app.route("/clear")
def clear():
 try:
 DB.clear_all()
 except Exception as e:
 print e
 return home()

if __name__ == '__main__':
 app.run(port=5000, debug=True)

Building an Interactive Crime Map

[88]

Looking at our SQL code
There's a little bit more SQL to learn from our database helper code. Add the
following code to the dbhelper.py file:

import pymysql
import dbconfig

class DBHelper:

 def connect(self, database="crimemap"):
 return pymysql.connect(host='localhost',
 user=dbconfig.db_user,
 passwd=dbconfig.db_password,
 db=database)

 def get_all_inputs(self):
 connection = self.connect()
 try:
 query = "SELECT description FROM crimes;"
 with connection.cursor() as cursor:
 cursor.execute(query)
 return cursor.fetchall()
 finally:
 connection.close()

 def add_input(self, data):
 connection = self.connect()
 try:
 # The following introduces a deliberate security flaw.
 See section on SQL injection below
 query = "INSERT INTO crimes (description) VALUES
 ('{}');".format(data)
 with connection.cursor() as cursor:
 cursor.execute(query)
 connection.commit()
 finally:
 connection.close()

 def clear_all(self):
 connection = self.connect()
 try:
 query = "DELETE FROM crimes;"
 with connection.cursor() as cursor:
 cursor.execute(query)
 connection.commit()
 finally:
 connection.close()

Chapter 6

[89]

As in our setup script, we need to make a connection with our database and then
get a cursor from our connection in order to do anything meaningful. Again, we will
do all our operations in try: finally: blocks in order to ensure that the connection
is closed.

In our helper, we will consider three of the four main database operations.
CRUD (Create, Read, Update, and Delete) describes the basic database operations.
We will either create and insert new data, read the existing data, modify the existing
data, or delete the existing data. We have no need to update data in our basic app,
but creating, reading, and deleting are certainly useful.

Reading data
Let's start with reading, assuming that there is some data already in our database. In
SQL, this is done using the SELECT statement; we will choose which data we want to
retrieve based on a set of conditions. In our case, the query in the get_all_inputs
function is SELECT description FROM crimes;. We'll take a look a bit later at how
to refine a SELECT query, but this one just grabs the description field for every row
in our crimes table. This is similar to the example we talked about at the beginning
of this chapter, in which we wanted to send out a newsletter and needed the e-mail
address of each of our customers. Here, we want the description of each of our crimes.

Once the cursor executes the query, it will point to the beginning of a data structure
containing the results. We will perform fetchall() on our cursor, which transforms
our results set to a list so that we can pass them back to our application code. (If you've
used generators in Python, it may help to think of a database cursor as a generator.
It knows how to iterate over the data but doesn't itself contain all the data).

Inserting data
Next up is our add_input() function. This takes the data input by the user and
inserts it into the database. Creating data in SQL is done using the INSERT keyword.
Our query (assuming foobar is our passed in data) is INSERT into crimes
(description) VALUES ('foobar').

This may look overcomplicated for what it actually does, but remember that we're
still dealing with a single field (description). We'll discuss later how INSERT is
designed to accept multiple but arbitrary columns, which can all be named in the
first set of brackets, and then matching values for each of these, which are given in
the second set of brackets, after VALUES.

As we made changes to the database, we will need to commit our connection to make
these permanent.

Building an Interactive Crime Map

[90]

Deleting data
Finally, we will take a look at how concise a DELETE statement in SQL can be. DELETE
FROM crimes wipes all the data from our crimes database. We'll consider later how
to make this keyword behave less like a nuke by specifying conditions to delete only
some data.

Again, this makes changes to our database, so we need to commit these.

If all the new SQL commands seem to be a lot to take in, go play around with them
for a bit in an online sandbox or even in our own live SQL shell that we discussed
how to access earlier. You'll find that SQL comes quite naturally after a while as most
of its keywords are taken from a natural language, and it uses very few symbols.

Finally, let's take a look at our HTML template.

Creating our view code
Python and SQL are fun to write, and they are indeed the main part of our application.
However, at the moment, we have a house without doors or windows; the difficult
and impressive bit is done, but it's unusable. Let's add a few lines of HTML to allow
the world to interact without the code we wrote.

In templates/home.html, add the following:

<html>
<body>
 <head>
 <title>Crime Map</title>
 </head>

 <h1>Crime Map</h1>
 <form action="/add" method="POST">
 <input type="text" name="userinput">
 <input type="submit" value="Submit">
 </form>
 clear
 {% for userinput in data %}
 <p>{{userinput}}</p>
 {% endfor %}
</body>
</html>

Chapter 6

[91]

There's nothing we haven't seen before. Here, we had a form with a single text input
to add data to our database by calling the /add function of our app, and directly
below it, we looped through all the existing data and displayed each piece within
<p> tags.

Running the code on our VPS
Finally, we need to make our code accessible to the world. This means pushing it to
our git repo, pulling it onto the VPS, and configuring Apache to serve it. Run the
following commands locally:

git add .

git commit –m "Skeleton CrimeMap"

git push origin master

ssh <username>@<vps-ip-address>

Now, on your VPS, run the following:

cd /var/www/crimemap

git pull origin master

Now, we need a .wsgi file to link Python to Apache, which can be created by
running the following command:

nano crimemap.wsgi

The .wsgi file should contain the following:

import sys
sys.path.insert(0, "/var/www/crimemap")
from crimemap import app as application

Now, hit Ctrl + X and then enter Y when prompted to save.

We also need to create a new Apache .conf file, and to set this as the default
(instead of headlines, the .conf file that is our current default). Run the following
commands to create the file:

cd /etc/apache2/sites-available

nano crimemap.conf

Next, add the following code:

<VirtualHost *>
 ServerName example.com

 WSGIScriptAlias / /var/www/crimemap/crimemap.wsgi

Building an Interactive Crime Map

[92]

 WSGIDaemonProcess crimemap
 <Directory /var/www/crimemap>
 WSGIProcessGroup crimemap
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

This is so similar to the headlines.conf file we created for our previous project that
you might find it easier to just copy the previous one and substitute as necessary.

Finally, we need to deactivate the old site and activate the new one, as follows:

sudo a2dissite headlines.conf

sudo a2ensite crimemap.conf

sudo service apache2 reload

Now, everything should be working. If you copied the code out manually, it's almost
certain that there's a bug or two to deal with. Don't be discouraged by this; remember
that debugging is expected to be a large part of development! If necessary, run tail
–f /var/log/apache2/error.log while you load the site to note any errors. If this
fails, add some print statements to crimemap.py and dbhelper.py to narrow down
where things are breaking.

Once everything works, you should be able to see a web page with a single text input.
When you submit text through the input, you should see the text displayed on the
page, as in the example that follows:

Chapter 6

[93]

Note how the data we get from the database is a tuple, so it is surrounded by
brackets and has a trailing comma. This is because we selected only a single field,
'description', from our crimes table, while we could, in theory, be dealing with
many columns for each crime (and soon we will do so).

Mitigating against SQL injection
Our application contains a fatal flaw. We take input from our users and insert it into
our SQL statements using Python string formatting. This works well when the user
enters a normal alphanumeric string as expected, but if the user is malicious, they
can actually inject their own SQL code and take control of our database. Although
SQL injection is an old attack and most modern technology automatically mitigates
against it, there are still dozens of attacks against major corporations every year in
which passwords or financial data are leaked due to a SQL injection vulnerability.
We'll take a moment to discuss what an SQL injection is and how to prevent it.

Injecting SQL into our database application
Navigate to our web application and hit the clear link to remove any saved inputs.
Now, in the input, type Bobby and click on the Submit button. The page should now
look similar to the following image:

Building an Interactive Crime Map

[94]

In this input, now type:

'); DELETE FROM crimes; --

All characters are important here.

The input needs to start with a single quote followed by a close bracket, followed by a
semicolon, and then followed by the delete statement, another semicolon, a space, and
finally two hyphens. You might expect to see a second line when the page refreshes,
listing this strange-looking string beneath the Bobby output, but instead, you'll see a
blank page that looks similar to the screenshot that follows:

This is weird, right? Let's take a look at what happened. In our DBHelper class,
our insert statements have the following line:

query = "INSERT INTO crimes (description) VALUES
('{}');".format(data)

This means that the user's input gets added into the SQL code just before we run the
code on the database. When we put the strange-looking input that we used previously
into the placeholder of the SQL statement, we will get the following string:

"INSERT INTO crimes (description) VALUES (''); DELETE FROM crimes; --
');"

These are two SQL statements instead of one. We closed off the INSERT statement
with an empty value and then deleted everything in the crimes table with the
DELETE statement. The two hyphens at the end form an SQL comment so that the
extra close quotation mark and bracket don't cause any syntax errors. When we input
our data, we inserted a blank row into our database and then deleted all the data
from the crimes table!

Chapter 6

[95]

Of course, a creative attacker could run any SQL statement in place of the DELETE
statement that we chose. They could drop an entire table (refer to https://xkcd.
com/327/ for a humorous example), or they could run a select statement to bypass a
database login function. Alternatively, if you store credit card information, a similar
attack could be used to fetch the data and display it to the attacker. In general, we don't
want the users of our web application to be able to run arbitrary code on our database!

Mitigating against SQL injection
Mitigating against SQL injection involves sanitizing user inputs and making
sure that if the user inputs special characters that might be interpreted as SQL
syntax, these characters are ignored. There are different ways to do this, and we'll
use a simple one provided automatically by our Python SQL library. For more
comprehensive information on this topic, take a look at https://www.owasp.org/
index.php/SQL_Injection_Prevention_Cheat_Sheet.

In the dbhelper.py file, change the add_input() method to read as follows:

def add_input(self, data):
 connection = self.connect()
 try:
 query = "INSERT INTO crimes (description) VALUES (%s);"
 with connection.cursor() as cursor:
 cursor.execute(query, data)
 connection.commit()
 finally:
 connection.close()

The %s token that we used here is a string placeholder similar to %d, which is used in
normal Python strings as a placeholder and an older alternative to braces. However,
instead of using Python's str.format() function, we will pass the string and values
that we want to insert into the placeholders to the PyMySQL cursor.execute()
function. This will now automatically escape all characters that are meaningful to
SQL so that we don't have to worry about them being executed.

https://xkcd.com/327/
https://xkcd.com/327/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Building an Interactive Crime Map

[96]

Now, if you try the inputs again, you'll see them displayed as expected-special
characters and all-as in the screenshot that follows:

In the final chapter of this book, we'll briefly talk about ORM techniques that can
provide even stronger mitigation against SQL injection attacks. While it might seem
to be a simple problem that we've solved by escaping some special characters, it can
actually become quite subtle. Tools such as sqlmap (http://sqlmap.org/) can try
hundreds of different variants on the same idea (that is, the idea of inputting special
characters against a database) until one gets unexpected results and a vulnerability is
found. Remember that for your application to be secure, it has to be protected against
every possible vulnerability; for it to be insecure, it only has to be vulnerable to one.

Summary
That's it for the introduction to our Crime Map project. We discussed how to
install a MySQL database on our VPS and how to hook it up to Flask. We looked at
creating, reading, updating, and deleting data, and we created a basic database web
application that can accept user input and display it back again. We finished off by
looking at the SQL injection vulnerability and how to protect ourselves against it.

Next up, we'll add a Google Maps widget and some better aesthetics.

http://sqlmap.org/

[97]

Adding Google Maps to Our
Crime Map Project

In the previous chapter, we set up a database and discussed how to add and remove
data from it through Flask. With a web application that can do input and output
with long-term storage, we now have the building blocks needed for nearly all web
applications and are limited only by the power of our imagination.

In this chapter, we will add more features than the text-only interface from the
previous chapter; we'll add embedded Google Maps that will allow a user to view
and select geographic coordinates in an intuitive way.

Google Maps is written in JavaScript, and we'll need to write some JavaScript
code to adapt Google Maps to our needs. As always, we'll do a whirlwind tutorial
for readers who haven't ever used JavaScript before, but if you're interested in
solidifying your all-inclusive web application knowledge, now is a good time to
quickly go through a couple of JavaScript-specific tutorials. If you've never seen any
JavaScript code before, an easy introduction that is similar to the HTML and CSS
tutorials we provided links to before can be found at http://www.w3schools.com/
js/default.asp.

Arguably, the most important part of a crime map is the map itself. We'll use the
Google Maps API, which is simple and powerful for developers and intuitive for
users. As a first step, we'll just add a basic map that loads to an area and zoom level
that we choose. Once we've seen to this, we'll add functionality to allow for markers.
Markers will serve two purposes for our map: first, we'll display a marker on the
map in the location of every crime we have saved in our database; second, when the
user clicks on the map, it'll add a new marker and allow the user to submit a new
crime report (eventually by adding a description and date in form fields).

http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp

Adding Google Maps to Our Crime Map Project

[98]

However, first we need to be able to run our application locally again for development
and debugging. Having linked it to the database, this is a bit tricky; so, we'll look at
how to solve this common problem.

In this chapter, we'll cover the following topics:

• Running a database application locally
• Adding an embedded Google Map widget to our application
• Adding an input form for new crimes
• Displaying existing crimes on our map

Running a database application locally
In order to develop and debug locally, we need to be able to run the application.
However, at the moment, this is not possible as MySQL is only installed on our
VPS. There are three main options to develop our database application locally:

• Connecting to the database on our VPS even when running Flask on our
local machine

• Installing MySQL on our local machine
• Creating a "mock" of our database in memory using Python

While any could work, we'll go with the third option. Connecting to our production
database would cause us to be affected by latency if we develop in a location
far from our VPS, and this would also mean that we'd run test code against our
production database, which is never a good idea. The second option would limit the
portability of our development environment, increase setup time if we switch to a
new development environment, and in the worst case scenario, use up a significant
amount of local resources.

Creating a mock of our database
If you try to run the crimemap.py file locally, the first error you will see is
ImportError because of the dbconfig.py file that we don't have. In the previous
chapter, we created this file directly on our VPS and didn't check it into git as it
contained sensitive database credentials. We'll create a local copy of dbconfig.py,
which indicates that our application should use a mock database. We'll update the
dbconfig.py file on our VPS to indicate that the real database should be used when
the app is run from there. We'll do this with a simple Boolean flag.

Chapter 7

[99]

Adding a test flag
In your local crimemap directory, create a new dbconfig.py file and add a single
line of code:

test = True

Now, SSH into your VPS and add the flag to the production configuration as well;
although, here, the value should be set to False, as follows:

ssh user@123.456.789.123

cd /var/www/crimemap

nano dbconfig.py

Add the following to the top of the file:

test = False

Then, type Ctrl + X followed by Y to save and quit the file

Now, exit the SSH session. This will solve ImportError (the dbconfig.py file now
exists on our VPS and locally), and our application is now aware of whether it is
running in test or production.

Writing the mock code
Our flag doesn't actually do anything yet though, and we don't want to trigger all the
exceptions when we test our app. Instead, we'll write a "mock" of our database code
(the code in the dbhelper.py file) that'll return basic static data or None. When our
application runs, it will be able to call database functions normally, but there will be
no actual database. Instead, we'll have a few lines of Python to emulate a very basic
database. Create the mockdbhelper.py file in your crimemap directory and add the
following code:

class MockDBHelper:

 def connect(self, database="crimemap"):
 pass

 def get_all_inputs(self):
 return []

 def add_input(self, data):
 pass

 def clear_all(self):
 pass

Adding Google Maps to Our Crime Map Project

[100]

As you can note, the methods we used for our basic database application all exist but
don't do anything. The get_all_inputs() method returns an empty list, which we
can still pass to our template. Now, we just need to tell our app to use this instead of
the real DBHelper class if we are in a testing environment. Add the following code to
the end of the imports section in crimemap.py, making sure to remove the existing
import for DBHelper:

import dbconfig
if dbconfig.test:
 from mockdbhelper import MockDBHelper as DBHelper
else:
 from dbhelper import DBHelper

We use our test flag in dbconfig to specify whether or not to import the real
DBHelper (which relies on having a connection to MySQL) or to import the mock
DBHelper (which does not need database connection). If we import the mock helper,
we can change the name so that the rest of the code can continue to run without
conditional checks for the test flag.

Validating our expectations
Now, you should be able to run the code locally, just as before we added a database
dependency. In your terminal, run:

python crimemap.py

Then, visit localhost:5000 in your browser to take a look at your app loading. Check
the output of the terminal to make sure that no exceptions are triggered (as would
be the case if you attempted to run the real DBHelper code instead of the mock ones
we just made). Although our application no longer "works", we can at least run it to
test our code that doesn't involve the database. Then, when we deploy to production,
everything should work exactly as in our tests, but with a real database plugged in.

Adding an embedded Google Maps
widget to our application
Now, we want to add a map view to our app instead of the basic input box. Google
Maps allows you to create a map without registration, but you will only be able to
make a limited number of API calls. If you create this project, publish a link on the
Web, and it goes viral, you stand a chance of hitting the limit (which is currently
2,500 map loads per day). If you think this will be a limiting factor, you can register
for the maps API and have the option of paying Google for more capacity. However,
the free version will be more than adequate for development and even production if
your app isn't too popular.

Chapter 7

[101]

Adding the map to our template
We want to display a map on the main page of our app, so this means editing the
code in the home.html file in our templates directory. Remove all the existing code
and replace it with the following:

<!DOCTYPE html>
<html lang="en">
 <head>
 <script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js">
 </script>

 <script type="text/javascript">
 function initialize() {
 var mapOptions = {
 center: new google.maps.LatLng(-
 33.30578381949298, 26.523442268371582),
 zoom: 15
 };
 var map = new
 google.maps.Map(document.getElementById("map-
 canvas"),mapOptions);
 }
 </script>

 </head>
 <body onload="initialize()">
 <div id="map-canvas" style="width:80%;
 height:500px;"></div>
 </body>
</html>

Introducing JavaScript
Let's take a look at what happened here. The first line told our user's browser that
we're using HTML5. Lines 4 to 6 include the map resources we need in our page.
Note that this is between <script> tags, indicating that it's JavaScript. In this
particular case, we did not actually write the JavaScript code – we simply linked
to where it's hosted on Google's servers. Think of this a bit as a Python import
statement, except we don't even have to install the package locally; it's simply
"imported" at runtime by your user's browser.

Adding Google Maps to Our Crime Map Project

[102]

Directly following this is our setup script to display a basic map. Again, this is
between <script> tags to indicate that it's JavaScript instead of HTML. This time,
we actually wrote the JavaScript code ourselves though. The syntax is similar to Java
in terms of brackets, braces, and for loops. Apart from this and its name, there is
little relation between it and Java.

The first line of our JavaScript code is a function definition; similar to Python's "def"
we use the function keyword to define a new function named initialise(). We
declared a variable with var mapOptions = and assigned a new JavaScript object
to this variable that looks similar to a Python dictionary. We define a location with
a latitude-longitude tuple-like object, which we have access to because of Lines 4 to
6, and the object also contains a "zoom" level. These options describe our initial map:
which area should be displayed and at what zoom level.

Finally, we created a new variable, map, and initialized a Google map object, passing
in the ID of an HTML element (which we'll explain in more detail in the following
section) and the map options we just defined. We then reached the end of our
JavaScript code, so we closed the <script> tag.

The body of our HTML code
Although our <body> section is only a couple of lines, it has some subtleties. The first
line opens the <body> tag and also defines the onload parameter. This parameter
takes the name of a JavaScript function that will be called automatically when the
page is loaded. Note that the function name ("initialize", in our case, as this is
the function we just wrote and want to be run automatically in order to create our
map) is enclosed in inverted commas. This might be counterintuitive if you think
of Python, in which inverted commas are used mainly for string literals. Think of it
as passing the function name to the body block but note the fact that we still use the
open-close brackets as part of the name.

The next line creates a <div> element. Normally, <div> does nothing except enclose
more HTML, but this doesn't mean that an empty <div> block, as we have here, is
pointless. Note the ID, map-canvas, that we give our <div>. This matches the name
in our JavaScript code; that is, the JavaScript function will look for an HTML element
called map-canvas (using document.getElementById()) and transform this into
Google Maps widget. Therefore, it makes sense to use a <div> element as we want
an empty element for our JavaScript code to use.

Chapter 7

[103]

Finally, our <div> element also includes some inline CSS. We can define the width
and height of our map (which is a requirement of the Google Maps API) using
CSS's height and width attributes. In this case, we defined the map to a constant
height value of 500 pixels and a width value of 80% of the page. The percentage for
the width is useful as the scrolling functionality is often overloaded with the zoom
functionality. That is, if the user wants to scroll down on our page using a touchpad
or mouse wheel and his or her cursor is over the map, the map will zoom in instead
of the page scrolling down. The 20 percent "blank" space on the right-hand side,
therefore, provides the user with somewhere to move the mouse to while scrolling.
Similarly, for touchscreens, the user would "pan" around the map while trying to
scroll, but can use this space to put his or her finger while scrolling.

Testing and debugging
We should now be able to run our web app locally and see the embedded Google
Map. If your app is not already running, use your terminal to start it up again and
navigate to localhost:5000 in your browser. As we don't store the code for Google
Maps locally, this needs to be fetched from Google's servers, so we need our local
machine to be online for this to work (similar to fetching the data we needed for our
Headlines application).

Debugging JavaScript code is a bit tricky as any errors won't be registered by Flask
and will therefore not be seen in your app output. If your web page is blank or does
anything unexpected, the first place to look is your browser's developer console.
This is a developer's tool that can be found in all the major browsers, normally
by pressing Ctrl + Shift + C and navigating to the "Console" tab in the window or
sidebar that appears. Here, you'll note any JavaScript errors or warnings that your
code has triggered, so this tool is invaluable in debugging a web application.

Although the console should report line numbers along with errors, it can sometimes
be difficult to track down exactly what is going wrong. JavaScript is a dynamically
typed language and is infamous for having some pretty quirky and counterintuitive
behavior. If necessary, you can also add JavaScript lines between the <script> tags
in your HTML that do nothing but log in to the developer tools console. To do this,
use the following:

console.log("A message");

This is similar to a Python print statement, and you can pass variables and most
objects to see a string representation of them logged to the output. Use the + symbol
to concatenate. For example, if you have a variable named "a" and you want to see its
value at a specific point in code, you could add the following line:

console.log("The value of a is: " + a);

Adding Google Maps to Our Crime Map Project

[104]

For a more sophisticated approach to debugging, take a look at the Debugger tab
of the developer tools window (or its equivalent in your browser) and play around
with setting breakpoints in JavaScript. The developer tools are generally a powerful
suite of tools and their full functionality is unfortunately beyond the scope of this
book. The following screenshot shows the Mozilla Firefox developer console with a
breakpoint set just before the map loads:

Once all the bugs are squashed (or straight-away if you are meticulous and lucky), you
should see a page in your browser containing an embedded Google Map centered on
Grahamstown, South Africa. Play around with the zoom level and coordinates set by
the mapOptions variable in your JavaScript code to get the initial map of your choice.
Clicking and holding on the map will allow "panning" or moving around the world.
Zooming is done by scrolling with your middle mouse wheel, using your touchpad,
or "pinch zooming" on touchscreen. The result should look similar to the following
screenshot:

Chapter 7

[105]

Let's now move on to making our map more interactive and useful.

Making our map interactive
The first functionality we'll add to our app will allow the user to place a marker
on the map. This will eventually allow the user to add a crime report by indicating
where the crime took place, thus adding to our crowd-sourced database of crimes.
We'll implement the marker functionality in JavaScript, as well, using a "listener".

Adding markers
JavaScript is event-driven. Actions such as a mouse move or mouse click are events,
and we can react to these events by setting up an event listener. The listener simply
runs in the background, waiting for a specific event, and then triggers a specified
action if it detects the event. We'll set up a listener for a mouse click, and if detected,
we'll place a map marker at the location of the mouse when clicked.

Using the Google Map API, this can be achieved in a few lines of code. First, we'll
make our map variable global. Then, we'll create a placeMarker() function that
will reference our map variable and place a marker on it when called. In our existing
initalise() function, we'll add a click listener that will call the placeMarker()
function when triggered.

Adding Google Maps to Our Crime Map Project

[106]

The full JavaScript code can be seen here with the modified lines highlighted:

<script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js">
</script>

<script type="text/javascript">

 var map;
 function initialize() {
 var mapOptions = {
 center: new google.maps.LatLng(-33.30578381949298,
 26.523442268371582),
 zoom: 15
 };
 map = new google.maps.Map(document.getElementById("map-
 canvas"), mapOptions);
 google.maps.event.addListener(map, 'click',
 function(event){
 placeMarker(event.latLng);
 });
 }

 function placeMarker(location) {
 var marker = new google.maps.Marker({
 position: location,
 map: map
 });
 }
</script>

Note specifically the change from var map = new google.maps.Map to map = new
google.maps.Map. We removed the var declaration, which means that we assigned
our new map to our global map variable instead of creating a new local variable.

The next line makes a call to addListener(), which might look a little odd. The
addListener() function takes a map, event, and function to be called when the
listener is triggered. As in Python, JavaScript has first-class functions, which means
that we can pass functions as arguments to other functions. Unlike Python, we don't
need to use the lambda keyword to create an anonymous function; we can simply
declare the function we want to pass in place of the argument. In this case, we
created an anonymous function that takes an event argument and in turn calls our
placeMarker() function, passing it the latLng property of event. In our case, event
is the mouse click that is picked up by the listener, and the latLng property is the
location of the mouse click.

Chapter 7

[107]

In our placeMarker() function, we accepted a location and created a new Marker
object, placing it at the passed-in location on our map (this is why we made the map
global; now we can refer to it in this new function).

In summary, when the page loads, we will add a listener that hangs around in
the background, waiting for a click. When a click is detected, the listener makes
a call to placeMarker(), passing in the coordinates of the click it detected. The
placeMarker() function then adds a marker at the specified coordinates, meaning
that the user sees a marker appear on the map as he or she clicks on the map. Give
it a try, using the console and debugger in your browser, as we did before, if things
don't go as expected. You should see a new marker placed on the map for every click
and be able to generate maps that look similar to the following screenshot:

Using a single marker
Creating a new marker for every click is not ideal. We actually want the user to be
able to move the marker with each click instead of creating a new one. Adding more
than one crime at a time would be overcomplicated and not overly useful.

Adding Google Maps to Our Crime Map Project

[108]

To achieve this, create another global marker variable under the existing global map
variable. Then, add a simple condition to the placeMarker() function that creates
a new marker only if there isn't one already and moves the location of the existing
one otherwise.

The full code, again with the modified lines highlighted, is shown as follows. Again,
note that we removed var from the line where we created a new marker variable, thus
using the global variable instead of creating a local one. With these changes, each click
on the map should move the marker instead of creating a new one. Try it out:

<script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js">
</script>

<script type="text/javascript">

 var map;
 var marker;
 function initialize() {
 var mapOptions = {
 center: new google.maps.LatLng(-33.30578381949298,
 26.523442268371582),
 zoom: 15
 };
 map = new google.maps.Map(document.getElementById("map-
 canvas"), mapOptions);
 google.maps.event.addListener(map, 'click',
 function(event){
 placeMarker(event.latLng);
 });
 }

 function placeMarker(location) {
 if (marker) {
 marker.setPosition(location);
 } else {
 marker = new google.maps.Marker({
 position: location,
 map: map
 });
 }
 }
</script>

Chapter 7

[109]

Adding an input form for new crimes
We want the user to be able to specify more information than simply a location.
The next step is to create a form that the user can use to add date, category, and
description data to a crime submission. Each of these pieces of information will be
stored in the database columns we created in the previous chapter. Creating web
forms is a common enough task that there are many frameworks and plugins to help
automate as much of the process as possible, as most forms need a pretty frontend,
which includes error messages if the user puts in unexpected input, as well as backend
logic to process the data and do a more thorough validation to prevent malformed or
incorrect data from polluting the database.

However, in the spirit of learning, we'll now create the backend and frontend of a
web form from scratch. In our next project, we'll take a look at how to do something
similar using various tools to make the process less laborious.

Our goal is to have a number of input fields to the right of our map, which allows
the user to specify details about a witnessed or experienced crime and submit it to
be included with our existing data. The form should have the following inputs:

• Category: A drop-down menu that allows the user to select which category
the crime falls into

• Date: A calendar that allows the user to easily enter the date and time of
the crime

• Description: A larger text box that allows the user to describe the crime in
free-form text

• Latitude and Longitude: Text boxes that are automatically populated based
on the location selected using the marker

After filling the preceding fields, the user should be able to click on a Submit button
and view the crime he or she just submitted appear on the map.

The HTML code for the form
The HTML code needed for our form is very similar to the forms created in our
earlier project, but it has some new elements as well, namely <textarea> and
<label> and an input with type= "date". The <textarea> element is very
similar to the standard text fields we noted before but appears as a larger square to
encourage the user to enter more text. Label elements can define a for attribute to
specify what we are labeling. The text between the opening and closing label tags is
then shown close to the element to be labeled.

Adding Google Maps to Our Crime Map Project

[110]

This is useful for our form as we can prompt the user about what data to enter in
each field. The date field will provide a nice calendar drop-down menu to select a
date. Unfortunately, it's a fairly recent addition to HTML and is not supported in
all browsers. In unsupported browsers (including Firefox), this will be identical
to a text input, so we'll look at how to handle dates input by the user at the end
of this chapter.

Also, note that we put the form inside a <div> element to make it easier to style and
position on the page (we'll also do this later). The full <body> element of our HTML
page now looks as follows (note that we added a heading and paragraph above the
map, while the form is added below the map). Take a look at the following code:

<body onload="initialize()">
 <h1>CrimeMap</h1>
 <p>A map of recent criminal activity in the
 Grahamstown area.</p>
 <div id="map-canvas" style="width:70%;
 height:500px"></div>

 <div id="newcrimeform">
 <h2>Submit new crime</h2>
 <form action="/submitcrime" method="POST">
 <label for="category">Category</label>
 <select name="category" id="category">
 <option value="mugging">Mugging</option>
 <option value="breakin">Break-in</option>
 </select>
 <label for="date">Date</label>
 <input name="date" id="date" type="date">
 <label for="latitude">Latitude</label>
 <input name="latitude" id="latitude"
 type="text">
 <label for="longitude">Longitude</label>
 <input name="longitude" id="longitude"
 type="text">
 <label for="description">Description</label>
 <textarea name="description" id="description"
 placeholder="A brief but detailed
 description of the crime"></textarea>
 <input type="submit" value="Submit">
 </form>
 </div>
</body>

Chapter 7

[111]

Refresh your page to see the form below the map. You'll notice that it looks pretty
terrible with different-sized fields and a horizontal layout, as in the following
screenshot:

Let's add some CSS to fix this.

Adding external CSS to our web application
To make the form appear to the right of our map, we'll use CSS. We already have some
CSS for our map, and we could add more CSS in a similar way. However, refer to
our discussion of inline, internal, and external CSS from Chapter 5, Improving the User
Experience of Our Headlines Project, in the Adding CSS to our Headlines application section,
and remember that having all CSS in a separate file is best practice. Therefore, we'll
create a style.css file and consider how to link it to our Flask app.

Adding Google Maps to Our Crime Map Project

[112]

Creating the CSS file in our directory structure
By default in Flask, our static files should be kept in a directory called static. We'll
want to keep various kinds of files in here eventually, such as images, JavaScript, and
CSS, so we'll create a subdirectory called CSS and create our style.css file inside
this. Navigate to your project directory in your terminal and run the following to add
this directory structure and file to our project:

mkdir –p static/css

touch static/css/style.css

Adding CSS code
Insert the following CSS code into this new file:

body {
 font-family: sans-serif;
 background: #eee;
}

input, select, textarea {
 display: block;
 color: grey;
 border: 1px solid lightsteelblue;
 line-height: 15px;
 margin: 2px 6px 16px 0px;
 width: 100%;
}

input[type="submit"] {
 padding: 5px 10px 5px 10px;
 color: black;
 background: lightsteelblue;
 border: none;
 box-shadow: 1px 1px 1px #4C6E91;
}

input[type="submit"]:hover {
 background: steelblue;
}

#map-canvas {
 width: 70%;
 height: 500px;
 float: left;

Chapter 7

[113]

}

#newcrimeform {
 float: right;
 width: 25%;
}

You'll probably notice the similarities with the CSS code that we used for our
Headlines project. However, there are still some important points to note:

• We defined the width and height of any element with the ID of map-canvas
here (in the second-last block), so we can remove the inline style from our
body.html file.

• We used CSS's float functionality to display our form to the right of our
map instead of below it. The map takes up 70% of the width of the page,
and the form takes up 25% (with the last 5% left so that the map and form
have some space between them. Our map floats to the left of the page, while
the form floats to the right. Because they take up less than 100% of the width
combined, they'll be displayed side by side in the browser.)

Configuring Flask to use CSS
Normally in HTML pages, we can link to external CSS files simply by giving a
relative path to the stylesheet. As we're using Flask, we need to configure our
application to return the CSS file as a static one. By default, Flask serves files from
a directory named static in the route of the project, which is why it's important to
place the CSS file here, as described earlier. Flask can generate a URL for the CSS file
we need to link to using the url_for function. In the home.html template, add the
following line to the top of the <head> section:

<link type="text/css" rel="stylesheet" href="{{url_for('static',
 filename='css/style.css') }}" />

This creates a link between our HTML and CSS. We used attributes to describe the
link as being to a text/css file and that it is a stylesheet. We then gave its location
with href using the url_for() function.

We also need to add a line of JavaScript code to populate the location input
automatically whenever the marker on the map is created or moved. This is achieved
by adding the lines highlighted in the following to the placeMarker() function:

function placeMarker(location) {
 if (marker) {
 marker.setPosition(location);
 } else {

Adding Google Maps to Our Crime Map Project

[114]

 marker = new google.maps.Marker({
 position: location,
 map: map
 });
 }
 document.getElementById('latitude').value = location.lat();
 document.getElementById('longitude').value = location.lng();
}

These lines simply find the latitude and longitude boxes (identified by their id
attribute) and insert the location used to place the marker. When we POST the form
to the server, we'll be able to read these values on the backend.

Finally, remove the inline CSS that we added earlier as this functionality is now
the responsibility of our external stylesheet. Take a look at the following line in the
home.html file:

<div id="map-canvas" style="width:70%; height:500px"></div>

The preceding line can be modified to instead be as follows:

<div id="map-canvas"></div>

Viewing the result
Reload the page in your browser to view the result. Remember that CSS and
JavaScript are often cached by your browser, so hit Ctrl + R for a hard refresh if you
see unexpected behavior. If Ctrl + R does not work, try hitting Ctrl + Shift + Delete
and select the cache option in the browser's menu and clear the browsing data before
refreshing again.

The styled map with the form should look similar to the following screenshot:

Chapter 7

[115]

Note that clicking on the map now populates the latitude and longitude boxes with
the coordinates of the marker.

Publishing the result
We have the form, the map, and some CSS, so now is a good time to push the result
to our VPS so that we can see what it looks like on different devices or ask people
for feedback.

To push our changes, fire up a terminal, change the directory to the root folder,
and run the following:

git add crimemap.py

git add templates/home.html

git add static

git commit –m "Map with form and CSS"

git push origin master

Adding Google Maps to Our Crime Map Project

[116]

Then, SSH into your VPS and pull the new code by running the following:

cd /var/www/crimemap

git pull origin master

sudo service apache2 reload

Visit the IP of your VPS to check whether the page worked and looks right. As usual,
look at /var/log/apache2/error.log if anything unexpected happens.

Linking the form to the backend
It's all very well to have a pretty form to accept user input, but at the moment, we're
just throwing away any submitted data. Instead of processing input in real time, as
we did in our headlines application, we want to capture the input and store it in our
database. Let's take a look at how to achieve this.

Setting up the URL to collect POST data
As in our Headlines project, the first step is to set up a URL on our server to
which the data can be posted. In the HTML form we created, we set this URL
to be /submitcrime, so let's create this as a route in our Flask app. In crimemap.py,
add the following function:

@app.route("/submitcrime", methods=['POST'])
def submitcrime():
 category = request.form.get("category")
 date = request.form.get("date")
 latitude = float(request.form.get("latitude"))
 longitude = float(request.form.get("longitude"))
 description = request.form.get("description")
 DB.add_crime(category, date, latitude, longitude, description)
 return home()

Here, we simply grabbed all the data the user entered and passed it to our database
helper. We used the DB.add_crime() function in the preceding code, but this does
not yet exist. We need it to really add the new data to our database for our real
DBHelper, and we also need a stub of this function for MockDBHelper. Let's take a
look at how to add these.

Chapter 7

[117]

Adding the database methods
In MockDBHelper.py, the function is simple. It needs to take the same arguments
and then not do anything. Add the following to mockdbhelper.py:

def add_crime(self, category, date, latitude, longitude,
 description):
 pass

The real function needs to be added to dbhelper.py and is a bit more involved.
It looks:

def add_crime(self, category, date, latitude, longitude,
 description):
 connection = self.connect()
 try:
 query = "INSERT INTO crimes (category, date, latitude,
 longitude, description) \
 VALUES (%s, %s, %s, %s, %s)"
 with connection.cursor() as cursor:
 cursor.execute(query, (category, date, latitude, longitude,
description))
 connection.commit()
 except Exception as e:
 print(e)
 finally:
 connection.close()

There is nothing we haven't seen before here. We used placeholder values and only
populated them within the cursor.execute() statement to avoid SQL injection, and
we closed our connection in a finally block to make sure it always happens.

Testing the code on the server
Here is another good point to commit all the changes to the repository and do a
quick check for bugs. Once the new code runs on your VPS, try adding a crime to
the database by visiting your IP address and filling in the form we made. On your
VPS, you can check to make sure the data was successfully added by running the
following commands. Note that this fires up a live SQL shell—a direct connection
to your database that should be used with care. A mistyped command can result in
data being irretrievably lost or corrupted. Run the following:

mysql –p

<your database password>

use database crimemap

select * from crimes;

Adding Google Maps to Our Crime Map Project

[118]

You'll see that MySQL prints a nice ASCII table that shows a summary of the data
in your database, as in the following screenshot (in this case, all the records and
columns from the crimes table of the crimemap database are shown):

Displaying existing crimes on our map
Now, the user can add new crimes to our crime database, but we want the map to
display crimes that are already added as well. To achieve this, whenever the page is
loaded, our app needs to make a call to the database to get the latest crime data. We
then need to pass this data to our template file, loop through each crime, and place a
marker in the correct place on the map.

Now, our data is stored in a MySQL database. We will access it using Python on
the server side, and we want to display it using JavaScript on the client side; so,
we'll need to spend a bit of time on converting our data to the appropriate format.
When we access the data through our Python pymysql driver, we will receive it as
a tuple. To display the data using JavaScript, we want it in JSON. JSON, you might
remember from our Headlines project, is JavaScript Object Notation, a structured
data format that JavaScript can easily read and manipulate. As with our previous
project, we'll take advantage of the fact that Python dictionaries are very similar to
JSON. We'll create a Python dictionary from the tuple we get out of our database,
convert this to a JSON string, and pass it to our template, which will use JavaScript
to display the data as markers on our map.

Getting data from SQL
We'll start in our DBHelper class—adding a method to return the fields we need for
each crime in our database. Add the following method to your dbhelper.py file:

def get_all_crimes(self):
 connection = self.connect()
 try:
 query = "SELECT latitude, longitude, date, category,
 description FROM crimes;"
 with connection.cursor() as cursor:
 cursor.execute(query)
 named_crimes = []

Chapter 7

[119]

 for crime in cursor:
 named_crime = {
 'latitude': crime[0],
 'longitude': crime[1],
 'date': datetime.datetime.strftime(crime[2], '%Y-
 %m-%d'),
 'category': crime[3],
 'description': crime[4]
 }
 named_crimes.append(named_crime)
 return named_crimes
 finally:
 connection.close()

Also, add the new import we need for the datetime module to the top of dbhelper.
py via the following:

import datetime

We ignored the id and updated_at fields as the user is not interested in these using
the SELECT operator to choose all our other fields. As we have no WHERE clause,
this query will return all the crimes we have in our database. Once we have all the
crimes, we could simply return them in their default representation of a tuple of
tuples. However, this makes the maintenance of our application difficult. We don't
want to have to remember that latitude is the first element of our tuple, longitude
is the second, and so on. This would make developing the JavaScript part of our
application a pain, as we'd have to keep referring back to our DBHelper to find
out how exactly to grab, for example, just the category element of our data. If we
wanted to make changes to our application in the future, it would probably require
the same changes to be made here and in our JavaScript code.

Instead, we will create a dictionary from each of our records and return the
dictionaries. This has two advantages: firstly, it's much easier to develop as we can
refer to the elements of our data by name instead of by index, and secondly, we can
easily convert our dictionary to JSON to be used in our JavaScript code. For most of the
items in our dictionary, we will simply use the database column name as a key and the
data itself as the value. The exception is the date; our database driver returns this as a
Python datetime object, but we want to display it as a string for our user, so we will
format it as "yyyy-mm-dd" before storing it in our dictionary.

We can add a stub of this method to our MockDBHelper so that we can continue to
run our code locally without a database. In this case, instead of just returning a blank
list, we'll return a mock crime, as well, in the same format that we'd expect from
our real DBHelper. It's good practice to make any mock classes you create behave
similarly to their real equivalents as this can help catch development errors while
we're still testing locally.

Adding Google Maps to Our Crime Map Project

[120]

Add the following function to mockdbhelper.py:

def get_all_crimes(self):
 return [{ 'latitude': -33.301304,
 'longitude': 26.523355,
 'date': "2000-01-01",
 'category': "mugging",

 'description': "mock description" }]

Passing the data to our template
Now that we have the ability to retrieve the data we want from our database by
calling a single function, let's look at how we will use it in our main Flask app and
pass it on to our template file.

Every time a user visits our home page, we want to get the crime data from the
database and pass it to the template in JSON format to be displayed using JavaScript
in our user's browser. As most of the hard work is done in our DBHelper class, we
can keep our home() function quite neat. The entire function looks as follows:

@app.route("/")
def home():
 crimes = DB.get_all_crimes()
 crimes = json.dumps(crimes)
 return render_template("home.html", crimes=crimes)

We will use the json.dumps() function, which is the opposite of json.loads() that
we used in the first project to create a JSON string for our dictionary (the letter "s" in
dumps stands for "string") and then pass the JSON string on to our template so that it
can use it to populate the map.

We also need to add an import for the JSON library. Near the top of crimemap.py,
add the following line:

import json

Using the data in our template
Our template now has access to a JSON-formatted list of all the crimes in our database,
and we can use this list to display markers on the map—one for each existing crime.
We want to use the location data to choose where to place the marker, and then we
want to embed category, date, and description as a label for our marker. This
means that when the user moves his or her mouse over one of the markers, the
information about the crime represented by this marker will be displayed.

Chapter 7

[121]

We need to add a new function to our JavaScript code in our home.html file.
Under the initialize() function, add the following:

function placeCrimes(crimes) {
 for (i=0; i<crimes.length; i++) {
 crime = new google.maps.Marker({
 position: new google.maps.LatLng(crimes[i].latitude, crimes[i].
longitude),
 map: map,
 title: crimes[i].date + "\n" +
 crimes[i].category + "\n" + crimes[i].description
 }
);
 }
}

This function takes crimes an argument, loops through it, and creates a new marker
on our map (which we can refer to now as we previously made it a global variable)
for each crime in the list. We used the call to google.maps.Marker() to create the
marker and pass in a dictionary of arguments (in this case, a google.maps.LatLng()
"position", which we construct from our latitude and longitude parameters); a
reference to our map, which is map; and a concatenation of our date, category, and
description, separated by new line characters as the title.

Customizing Google Map markers
The marker we placed can be customized pretty heavily. The full list
of options we can pass in can be seen at https://developers.
google.com/maps/documentation/javascript/
reference?hl=en#MarkerOptions.

All that's left is to make a call to our new function inside our initialize() function
and pass in the JSON map list that we built in Python. The entire initialize()
function is shown here with the new section highlighted:

function initialize() {
 var mapOptions = {
 center: new google.maps.LatLng(-33.30578381949298,
 26.523442268371582),
 zoom: 15
 };
 map = new google.maps.Map(document.getElementById("map-
 canvas"), mapOptions);

https://developers.google.com/maps/documentation/javascript/reference?hl=en#MarkerOptions
https://developers.google.com/maps/documentation/javascript/reference?hl=en#MarkerOptions
https://developers.google.com/maps/documentation/javascript/reference?hl=en#MarkerOptions

Adding Google Maps to Our Crime Map Project

[122]

 google.maps.event.addListener(map, 'click', function(event){
 placeMarker(event.latLng);
 });
 placeCrimes({{crimes | safe}});
}

We simply called our placeCrimes() function and passed in the crimes. Note that
we used the Jinja built-in safe function by using the | (pipe) symbol and passing
in our crimes data. This is necessary as, by default, Jinja escapes most special
characters, but we need our JSON string to be interpreted raw with all special
characters as is.

However, by using the safe function, we tell Jinja that we know that our data is safe
and at this stage, this is not necessarily the case. Just because we have no malicious
intent, it does not mean that all our data is inherently safe. Remember, most of the
pieces of data were submitted by our users, and our data is therefore definitely not
safe. We'll take a look at the big security hole we've opened in our app right after we
make sure that it works (with normal, expected usage) as intended.

If you're familiar with *nix shells, | or pipe should be pretty
straightforward syntax. If not, think of it as a usual function with input
and output. Instead of passing input as parameters in parentheses and
using some form of a return function to get output, we will instead
have our input on the left-hand side of the | symbol and the function
name on the right-hand side (in this case, safe). The input gets piped
through the function, and we are left with the output in place. This
syntax can be very useful to chain lots of functions together, as each outer
function is simply placed on the right-hand side after another | symbol.

Viewing the results
First, test out the code locally. This will make sure that everything still runs and
will possibly catch some more subtle bugs as well. As we are using a mock for our
database function, we won't have a lot of confidence that this works until we see it
run on the VPS.

Once you run python crimemap.py in your terminal and visit
localhost:5000 in your browser, you should see the following:

Chapter 7

[123]

We can note a single marker with the details we specified in our MockDBHelper.
In the screenshot, we moved our mouse over the marker to make the title appear
with all the details of the crime.

Now it's time to commit to git and push to our VPS. Run the following commands
locally from your crimemap directory:

git add crimemap.py

git add dbhelper.py

git add mockdbhelper.py

git add templates/home.html

git commit –m "add new crimes functionality"

git push origin master

Adding Google Maps to Our Crime Map Project

[124]

Then, SSH to your VPS to pull the new changes:

ssh username@123.456.789.123

cd /var/www/crimemap

git pull origin master

sudo service apache2 reload

If we visit the IP address of our VPS now, we should see the two crimes we added
before we were able to display them. As we used the real DBHelper and our MySQL
database for the production site, we should be able to add crimes using the form
and see each crime added as a marker to the map in real time. Hopefully, you'll get
something similar to the following screenshot:

Chapter 7

[125]

If things don't work out as expected, as always run the following on your VPS
and take a look at the output while visiting the site:

tail –f /var/log/apache2/error.log

Also, use your browser's debugger by pressing Ctrl + Shift + C to catch any
JavaScript errors that might have crept in.

Our crime map is now functional and can already be used to start tracking crime in
a town and keep people informed. However, we'll still add some finishing touches in
the next chapter before moving on to our final project.

Summary
In this chapter, we looked at how to create a mock database in Python so that we
could develop our application without needing access to a real database. We also
added a Google Maps widget to our application and allowed our users to easily
submit a latitude and longitude by clicking on the map while being able to view
the locations and descriptions of existing crimes as well.

In the next chapter, we'll look at another injection vulnerability, XSS, and talk about
how to protect against it as well as input validation in general.

[127]

Validating User Input in Our
Crime Map Project

Users will always use your application in ways you didn't intend or expect, either
out of ignorance or malicious intent. Every bit of input that the user has any control
over should be validated to make sure it conforms to what is expected.

We'll polish off our second project by making sure that users can't break it
accidentally or through maliciously crafted input.

In this chapter, we will cover the following topics:

• Choosing where to validate
• Trying out an XSS example
• Validating and sanitizing

Choosing where to validate
There are a few choices to make when it comes to validating user input and displaying
feedback that helps them fix any mistakes they make. The major choice is where to do
the validation: in the browser, on the server, or both.

We could do it in JavaScript in the user's browser. The advantages of this approach
are that the users will get faster feedback (they don't have to wait to send data to
our server, have it validated, and have a response sent back), and it also lightens the
load on our server; if we don't use CPU cycles and network bandwidth to validate
user data, it means we have lower costs associated with running our server. The
disadvantage of this approach is that we have no assurance that the user will not
bypass these checks; if the checks are run in the user's browser, then the user has full
control over them. This means that data that is validated by client-side checks is still
not guaranteed to be what we expect.

Validating User Input in Our Crime Map Project

[128]

We could do it on the server after the user submits the data. The advantages and
disadvantages of this approach are the opposite of those described earlier. We use
more processing time that we're paying for, but we get extra assurance about the
integrity of our checks. On the other hand, the user normally has to wait longer to
get feedback about legitimate (not malicious) errors.

The final option is to do both. This gives us the best of all worlds; we can give fast
feedback to the user in JavaScript, but then recheck the results on the server side to
make sure that nothing got past our client-side checks. The flipside of this is that
we end up wasting time on CPU cycles checking legitimate data twice, and we also
have to put more effort into development as we have to write validation checks in
JavaScript and in Python.

In this project, as we will implement our form management from scratch, we'll just
do some very basic checks on the server side and no checking on the client side. In
our next project, when we use frameworks to handle user input, we'll discuss how to
easily use some more sophisticated validation methods.

Identifying inputs that require validation
We have already noted that not all browsers support the HTML5 "date" type
input. This means that, as our site stands, some users will possibly type the date of
the crime in manually, and this means that we need to be able to deal with the user
inputting dates in various formats. Our database expects yyyy-mm-dd (for example,
2015-10-10 for October 10, 2015), but our users will not necessarily conform to this
format even if we tell them to. The Date field, then, is one of the inputs we would
want to validate.

Our Latitude and Longitude fields are also editable by the user, and therefore the
user could enter text or other invalid coordinates in them. We could add validation
checks for these, but, as the user should never actually need to edit these values,
we'll instead consider how to make them read only. We'll add a validation check to
make sure that the user has not left them blank, though.

The Description is the most obviously dangerous field. The user can freely input
text here, and this means that the user has opportunities to inject code into our app.
This means that instead of filling in a text description, as we'd probably expect, the
user can input JavaScript or HTML code here that interferes with the code that we
expect to run. Doing so would be an example of a so-called XSS or cross-site scripting
attack, and we'll look at some malicious inputs that a user might use here.

Chapter 8

[129]

Our last input is the Category. This might seem perfectly safe as the user has to select
it from a drop-down list. However, it's important that the drop-down is merely a
convenience, and, actually, a user with some very basic knowledge can use free-form
text here as well. This is because the browser uses the information from the form to
create a POST request, which it sends to our server. As a POST request is just text that
is structured in a certain way and sent over HTTP; there is nothing stopping our
tech-savvy users from constructing the POST request without using a web browser
(they could use Python or another programming language instead or even some
more specialized, but freely available software, such as BURP Suite).

As we can see, all of our inputs need validation in some form or another. Before we
take a look at exactly how to go about validating input, let's take a brief look at what
a malicious user might do if we decided not to implement validation.

Trying out an XSS example
One of the most sought-after attacks by malicious users is a so-called persistent XSS
attack. This means that the attacker not only manages to inject code into your web
app but this injected code also remains for an extended period of time. Most often,
this is achieved by tricking the app into storing the malicious, injected code in a
database and then running the code on a page on subsequent visits.

In the following examples, we will break our application, specific
inputs to our form. You will need to log in to the database on VPS
afterwards to manually clear these inputs that leave our app in a
broken state.

As our app currently stands, an attacker could carry out a persistent XSS attack by
filing out the Category, Date, Latitude, and Longitude fields as usual, and using the
following for the Description field:

</script><script>alert(1);</script>

Validating User Input in Our Crime Map Project

[130]

This might look a bit strange, but give it a go. You should see the following:

And after you click OK on the popup, you'll probably notice a strange excerpt
from JavaScript at the top of our page (your value for longitude will be different,
depending on where you placed the marker):

", "longitude": 26.52799}]); } function placeCrimes(crimes) { for
 (i=0; i

Let's look at what happened here. If we look at the full source code of our page, as it
got interpreted by our browser, things will make more sense. Right-click on the page
and click on View Page Source or an equivalent.

The placecrimes() call in the initialize function of our JavaScript code can be
seen to now read as follows:

placeCrimes([{"latitude": -33.305645, "date": "2015-10-10",
"category": "mugging", "description":
"</script><script>alert(1);</script>", "longitude": 26.52799}]);

Chapter 8

[131]

If your browser uses any form of code highlighting, it'll be easier to see what's
happening. The opening <script> tag near the beginning of our page is now closed
by the description of our first crime, as our browser knows to interpret anything that
comes between <script> and </script> as JavaScript code. As we have </script>
at the beginning of our "description", the browser closes this section of JavaScript.
Immediately after this, a new JavaScript section is opened by <script>, which is
the next part of our description. Following this, we have alert(1);, which simply
creates the pop-up box with 1 in it that we noted earlier. This script section is closed
again, and the rest of our page is now interpreted as a mess by our browser. We can
see the rest of our JSON ("longitude": …) until halfway through our for loop is
displayed to the user, and the "<" symbol from i<crimes.length is now interpreted
by the browser as another opening tag so that the JavaScript that follows this is
hidden again.

To fix our app, wipe all the crime data from your database with the following
commands (which you should run on VPS):

mysql crimemap –p

<your database password>

delete from crimes;

You should see a message about how many crime records were deleted from the
crimes table, similar to that seen in the following screenshot:

The potential of persistent XSS
It may seem pretty bad that our web application is broken. Worse still, reloading
the page is not a solution. As the malicious description is stored in our database, the
same issue will appear no matter how many times we reload the page. Even worse,
the "alert(1);" example is just this—an example to show that the attacker has the
freedom to run any code he or she desires. Often, an attacker uses this to trick the
user into visiting another (malicious) page, banking on the fact that the user trusts the
original page and will, therefore, be more likely trust the content on it. The possibilities
are really only limited by our attacker's imagination.

Validating User Input in Our Crime Map Project

[132]

Validating and sanitizing
To prevent the preceding, we've already chosen to inspect the data on the server side
and make sure it conforms to our expectation. We still have a few more choices to
make, though.

White and blacklisting
We need to create some rules to choose between acceptable inputs and unacceptable
inputs, and there are two main ways of doing this. One way is to blacklist inputs that
look malicious. Using this method, we would create a list of characters that might
be used maliciously, such as "<" and ">", and we will reject inputs that contain
these characters. The alternative is to use a whitelist approach. This is the opposite
of blacklisting, in that, instead of choosing which characters we won't allow, we can
choose a list of characters that we will allow.

It may seem like a nit-picky distinction, but it is important nonetheless. If we go with
a blacklist approach, we are more likely to be outsmarted by malicious users who
manage to inject code using only characters that we haven't added to our ban list.

On the other hand, using a whitelist approach, we are more likely to frustrate users
who want to use characters which we haven't thought to add to the whitelist.

As our app only requires a "description" input to be free-text and because our
app is localized (in the examples we used, the app is specific to Grahamstown, South
Africa, and therefore we will expect our users to only need normal Latin characters
and not, for example, Chinese characters), we should be able to employ whitelisting
without getting in the way of our users.

Validating versus sanitizing
Next, we have to decide what to do with invalid input. Do we reject it completely
and ask the user to try again, or do we just strip away the invalid parts of the
user input and keep the rest? Removing or modifying user input (for example, by
adding escape characters) is referred to as sanitizing the input. The advantage of this
approach is that the user is often oblivious to it; if he or she inadvertently includes
a special character in the description of the crime and we remove it, it's unlikely to
make the rest of the description incomprehensible or worthless. The disadvantage is
that if the user does end up relying on too many characters that we have blacklisted,
it can corrupt the information to the point of being unusable or even misconstruing
what the user intended.

Chapter 8

[133]

Implementing validation
With all of the preceding in mind, we want to:

• Check the category that the user submits and make sure it is in the list of
categories that we expect

• Check the date that the user submits and make sure that we can properly
understand it as a date

• Check the latitude and longitude that the user submits and make sure that
these are parsable as floating point numbers

• Check the description that the user submits and strip out all characters
except for those that are alphanumeric or part of a preselected list of basic
punctuation characters

Although we'll silently edit the description to remove non-whitelisted characters,
we want to reject the entire submission and make the user start again if the other
fields aren't as we expect. We, therefore, also want to add a way of displaying
custom error messages to the user after he or she submits the form. Let's add a few
Python functions to help us with all of this. We'll also restructure some of our code to
conform to the Don't repeat yourself(DRY) principle.

Validating the category
Previously, when we created the drop-down list for categories, we hardcoded the
two categories we wanted into our template. This is already not ideal as it means
that we have to write our more boilerplate code (such as HTML tags) if we ever want
to add or edit the categories. Now that we also want access the list of categories
in Python, so that we can validate that the user hasn't sneakily used a category that
isn't in our list, it makes sense to restructure it a bit so that we only define our list of
categories once.

We'll define the list in our Python code and then we can pass it to our template
to construct the drop-down list and use the same list for validation when the user
submits the form. At the top of crimemap.py, along with our other globals, add
the following:

categories = ['mugging', 'break-in']

In the return statement of the home() function, pass in this list as a named argument.
The line should now look similar to this:

return render_template("home.html", crimes=crimes,
categories=categories)

Validating User Input in Our Crime Map Project

[134]

In home.html, change the <select> block to use a Jinja for loop, as follows:

<select name="category" id="category">
 {% for category in categories %}
 <option value="{{category}}">{{category}}</option>
 {% endfor %}
</select>

With these small modifications, we have a much easier way to maintain our list
of categories. We can now also use the new list to validate. As the category is
provided by a drop-down list, the average user does not enter an invalid value here,
so we don't have to worry too much about providing polite feedback. In this case,
we'll just ignore the submission and return to the home page again.

Add the following if statement directly below where we loaded the category data
into a variable in the submitcrime() function:

category = request.form.get("category")
if category not in categories:
 return home()

If triggered, this return would happen before we add anything to the database,
and our user's attempted input would be discarded.

Validating the location
As our location data should be populated automatically by the marker that the user
places on the map, we want to make these fields readonly. This means that our
JavaScript will still be able to modify the values as the marker gets used, but the
fields will reject input or modification from the user's keyboard. To do this, simply
add the readonly attribute where we define the form in our home.html template.
The updated input definitions should look as follows:

<label for="latitude">Latitude</label>
<input name="latitude" id="latitude" type="text" readonly>
<label for="longitude">Longitude</label>
<input name="longitude" id="longitude" type="text" readonly>

As with the drop-down list, though, the readonly property is only enforced at a
browser level and is easily bypassed. We, therefore, want to add a server-side check as
well. To do this, we'll use the Python philosophy of "it is better to ask for forgiveness
than permission", or, in other words, assume everything will be OK and deal with the
other cases in an except block instead of using too many if statements.

Chapter 8

[135]

If we can parse the user's location data into floating point numbers, it's almost
definitely safe as it's pretty difficult to do things such as modifying HTML, JavaScript,
or SQL code using only numbers. Add the following code around the section of the
submitcrime() function where we parse the location inputs:

try:
 latitude = float(request.form.get("latitude"))
 longitude = float(request.form.get("longitude"))
except ValueError:
 return home()

If there's any unexpected text in the latitude or longitude inputs, ValueError will
be thrown when we attempt to cast to the float type, and, again, we'll return to the
home page before putting any of the potentially dangerous data into our database.

Validating the date
For the date input, we could take the same approach as we did for the category.
Most of the time, the user will select the date from a calendar picker and, therefore,
will be unable to input an invalid date. However, as not all browsers support the
date input type, sometimes, normal users will type out the dates manually, and this
may lead to accidental error.

Therefore, in this case, we don't only want to reject invalid input. We want to, as far
as possible, work out what the user intended, and if we cannot, we want to display
a message to the user to indicate what needs to be fixed.

To allow for a more flexible input, we'll use a Python module called dateparser.
This module allows us to take even inconsistently formatted dates and convert them
into accurate Python datetime objects. The first thing we need to do is install it
through pip. Run the following command locally and on VPS:

pip install --user dateparser

If you haven't used it before, you might like to play around a bit with the possibilities.
The following standalone script demonstrates some of the magic that dateparser
provides:

import dateparser
print dateparser.parse("1-jan/15")
print dateparser.parse("1 week and 3 days ago")
print(dateparser.parse("3/4/15")

All the preceding strings are correctly parsed into datetime objects, except, arguably,
the last one, as dateparser uses the American format and interprets it to be March 4,
2015, instead of April 3, 2015.

Validating User Input in Our Crime Map Project

[136]

Some more examples as well as other information about the dateparser module can
be found on PyPI at https://pypi.python.org/pypi/dateparser.

Just using this package will solve a lot of our problems as we can now transform
invalid inputs into valid ones without any help from the user at all. The slight
inconvenience is that we have already set up our database to accept dates to be
inserted as strings in the "yyyy-mm-dd" format; however, to take advantage of our
new dateparser module, we'll want to convert the user's input to a datetime object.
The slightly counterintuitive workaround is to convert the string input we receive
from the user to a datetime object and then back to a string (which will always be in
the correct format) before passing it into our database code to store in MySQL.

First off, add the following helper function to your crimemap.py file:

def format_date(userdate):
 date = dateparser.parse(userdate)
 try:
 return datetime.datetime.strftime(date, "%Y-%m-%d")
 except TypeError:
 return None

Also, add the imports for the datetime and dateparser modules to the top of
crimemap.py, as follows:

import datetime
import dateparser

We'll pass the date as input by our user (userdate) into this function and parse this
using our dateparser module. If the date is completely unparsable (for example,
"aaaaa"), the dateparser.parse function will just return nothing instead of throwing
an error. Therefore, we will put the call to strftime, which will format the date as
a string in the correct format into a try except block; if our date variable is empty,
we'll get a TypeError, in which case our helper function will also return None.

Now, we need to decide what to do in case we cannot parse the date. Unlike the
other validation cases we looked at, in this case, we want to prompt the user with a
message saying that we were unable to understand his or her input. To achieve this,
we'll add an error message parameter to the home() function and pass in a relevant
error message from the submitcrime() function. Modify the home() function to add
the parameter and to pass the parameter into our template, as follows:

https://pypi.python.org/pypi/dateparser

Chapter 8

[137]

@app.route("/")

def home(error_message=None):

 crimes = DB.get_all_crimes()

 crimes = json.dumps(crimes)

 return render_template("home.html", crimes=crimes,
categories=categories, error_message=error_message)

Then, modify the submitcrime() function to add some logic to parsing the date
input by our user and to pass an error message to our home() function if we fail to
parse the date, as follows:

if category not in categories:
 return home()
date = format_date(request.form.get("date"))
if not date:
 return home("Invalid date. Please use yyyy-mm-dd format")

We also need to add a section to our template file to display the error message if it
exists. We'll add it to the top of the form where it should catch the user's attention via
the following code:

<div id="newcrimeform">
 <h2>Submit new crime</h2>
 {% if error_message %}
 <div id="error"><p>{{error_message}}</p></div>
 {% endif %}
 <form action="/submitcrime" method="POST">

We will add the preceding if statement as we'll otherwise see the word "None"
appear above our form when the error_message variable has its default value of
None. Also, note that the message itself appears in a <div> tag with an ID of error.
This allows us to add some CSS to make the error message appear in red. Add the
following block to your style.css file in your static directory:

#error {
 color: red;
}

Validating User Input in Our Crime Map Project

[138]

That's it for validating our date. If you have a browser that does not support the date
input, try creating a new crime and inputting a string that even dateparser cannot
interpret as a legitimate date to make sure you see the error as expected. It should
look something similar to the following image:

Flask provides some pretty nifty functionality for message flashing—that
is, to display optional text to the user at a specific position on the page.
This has some more powerful and flexible functionality than the basic
example we discussed, and should certainly be considered for similar
cases. Information about message flashing in Flask can be found at
http://flask.pocoo.org/docs/0.10/patterns/flashing/.

Validating the description
We can assume that a user will be able to convey basic information about a crime
using only numbers, letters (capital and lowercase), and some basic punctuation
marks, so let's create a simple Python function that filters out all characters from a
string except the ones we have identified as safe. Add the following sanitize()
function to your crimemap.py file:

http://flask.pocoo.org/docs/0.10/patterns/flashing/

Chapter 8

[139]

def sanitize_string(userinput):
 whitelist = string.letters + string.digits + " !?$.,;:-'()&"
 return filter(lambda x: x in whitelist, userinput)

Then, add the import for string to the imports section of crimemap.py, as follows:

import string

Our sanitize_string() function is quite concise, and uses some of Python's
functional programming potential. The filter function applies another function
repeatedly for each element in a list and builds a new list based on the ones that
"pass." In this case, the function that we will pass into filter() is a simple lambda
function that checks whether or not a letter belongs to our whitelist. The result of
our function is a string similar to the input one, but with all the characters that aren't
part of our whitelist removed.

Our whitelist is built from all the letters (uppercase and lowercase), the digits one to
nine, and some basic punctuation marks that people may use while typing informal
descriptions of events.

To use our new function, simply change the line near the end of the submitcrime()
function in crimemap.py from the following to the subsequent:

description = request.form.get("description")
description = sanitize_string(request.form.get("description"))

Note that, as our SQL driver mitigates against SQL injection and our json.dumps()
function escapes double quotation marks, we should be largely safe just by blacklisting
characters such as angle brackets, which we used to demonstrate an XSS attack. This
would allow more flexibility for our users, but malicious users can be determined and
creative in crafting input that will bypass the filters we set up. Refer to https://www.
owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet for some examples.
Give the validation changes a go locally first and then, if everything looks good
by committing to git, push the repo to the remote, and pull it onto VPS. Restart
Apache and visit your IP address. Try submitting a crime using </script> in the
description, and you'll notice when you hover the cursor over the marker for this
crime that all we've stored is "script". We will strip the slash and the angle brackets,
thus ensuring protection against XSS.

We already discussed the pros and cons of blacklisting and whitelisting, but, to
emphasise that whitelisting is not a perfect approach, take a look at the post here
about mistakes developers often make when whitelisting an input for users' names:
http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-
about-names/

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

Validating User Input in Our Crime Map Project

[140]

The last change we can make to our dbhelper.py, mockdbhelper.py, and crimemap.
py files is to remove the functions we no longer need. When we had a basic database
application that was not specific to crimes, we had the get_all_inputs(), add_
input(), and clear_all() functions in our DBHelper classes and the add() and
clear() functions in our crimemap.py file. All of these can be removed.

Summary
We have spent a whole chapter looking at validation, but if you look at the major
companies that have faced information security breaches over the last few years,
you'll agree that security is worth spending some time on. We looked specifically
at cross-site scripting or XSS attacks, but we also discussed some more general
points of input validation. This takes us to the end of our second project.

One thing that is notably missing is to work out who added which crimes. If one
malicious user adds a bunch of bogus crimes to our database, they could potentially
mess up our entire dataset!

In our next project, we'll look at authenticating users through a User Account
Control system, which will give us more control over who we let on our site and
what they can do.

[141]

Building a Waiter Caller App
After going through the headlines project, in which you learned the basics of Flask,
and the Crimemap project, in which you learned about some more useful Flask
features, such as how to use a database and how to write some basic JavaScript
code, we're now ready for our most sophisticated project yet! We will build a waiter
caller web application that allows restaurant patrons to easily call a waiter to their
table. The restaurant manager will easily be able to register for and start using our
application without the need to invest in expensive hardware.

We will dive even deeper into the Flask world, taking a look at some Flask extensions
to help us with user account control and web forms, and we'll look at how to use
template inheritance in Jinja, too. We'll also use the Bootstrap frontend framework so
that we don't have to do so much of the HTML and CSS code from scratch.

In contrast with the MySQL database we used for our previous application, we'll
take a look at a controversial alternative: MongoDB. MongoDB is a NoSQL database,
which means that we don't deal with tables, rows, and columns in it. We'll also
discuss exactly what this means.

One of the most difficult tasks for a waiter is to know when a patron needs something.
Either the patron complains that they waited for far too long before the waiter came
and asked about dessert options, or they complain that the waiter was constantly
interrupting conversation in order to ask whether everything was all right. In order
to solve this problem, some restaurants install dedicated buttons at each table which,
when pressed, notify the waiter that his attention is wanted. However, the cost of
specialized hardware and installation is prohibitive for smaller establishments and
often just too much hassle for larger ones.

Building a Waiter Caller App

[142]

In our modern day and age, nearly all restaurant-goers have smartphones, and
we can leverage this fact to provide restaurants with a much more cost-effective
solution. When patrons want attention, they will simply visit a short URL on their
phone, and the waiters will receive a notification on a centralized screen.

We want the application to allow for multiple, unrelated restaurants to use the same
web application, so each should have a private login account for our system. We
want it to be easy for the restaurant manager to set up; that is, we as developers
should not need to be involved at all when a new restaurant joins the system.

The setup required for our application is as follows:

• The restaurant manager signs up a new account on our web application
• The restaurant manager provides basic information about how many tables

the restaurant has
• The web application provides a unique URL for each table
• The restaurant manager prints out these URLs and ensures that the relevant

URL is easily accessible from each table

The usage of our application should have the following features:

• The restaurant staff should be able to log into the web application from
a centralized screen and see a simple notification page.

• Some patrons would want service and visit the URL relevant to their table
on a smartphone, so this should be possible.

• In real time, the waiters should see a notification appear on a centralized
screen. The waiter will then acknowledge the notification on the screen and
attend to the patrons.

• If more notifications arrive before the first one is acknowledged, the later
ones should appear beneath the earlier ones.

Over the next three chapters, we'll implement a Flask application that has all of the
preceding features. We'll have a database to store the account information of all the
individual restaurants that register to use our application so that we can process
patron requests for each of them individually. Patrons will be able to make requests,
which will be registered in the database, while the restaurant staff will be able to
view current attention requests for their establishment. We'll build a user account
control system so that restaurants can have their own password-protected accounts
for our application.

Chapter 9

[143]

To start with, we'll set up a new Flask application, Git repository, and Apache
configuration to serve our new project. We'll introduce Twitter's Bootstrap framework
as the one we'll use on the frontend. We'll download a basic Bootstrap template as a
start for the frontend of our application and make some changes to integrate it into a
basic Flask application. Then, we'll set up a user account control system that allows
users to register, log in, and log out of our application by supplying an e-mail address
and password.

In this chapter, we'll cover the following topics:

• Setting up a new git repository
• Using Bootstrap to kick-start our application
• Adding User Account Control to our application

Setting up a new Git repository
As before, we need to create a new git repository to host our new project. The first
step is to go to log into the web interface of BitBucket or whichever code repository
host you are using, select the Create a new Repository option, and select the Git
radio option, taking note of the URL with which it provides you. As the next steps
are identical to the previous projects, we will give you only a summary. If you need
more fine-grained guidance, refer to the Installing and using git section of Chapter 1,
Hello, World!.

Setting up the new project locally
To set up the local project structure, run the following commands locally:

mkdir waitercaller

cd waitercaller

git init

git remote add origin <new-repository-url>

mkdir templates

mkdir static

touch waitercaller.py

touch templates/home.html

touch .gitignore

Building a Waiter Caller App

[144]

We want to get the minimal running app for this project so that we can iron out any
configuration issues before we get started with development. Add the following to
your waitercaller.py file:

from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 return "Under construction"

if __name__ == '__main__':
 app.run(port=5000, debug=True)

Then, push the project outline to the repository with the following commands:

git add .

git commit –m "Initial commit"

git push origin master

Setting up the project on our VPS
On your VPS, run the following commands to clone the repository, and set up
Apache2 to serve our new project as the default website:

cd /var/www/

git clone <new-repository-url>

cd waitercaller

nano waitercaller.wsgi

Add the following code to the .wsgi file we created with the most recent command:

import sys
sys.path.insert(0, "/var/www/waitercaller")
from waitercaller import app as application

Now, hit Ctrl + X and select Y when prompted to quit Nano.

Lastly, create the Apache configuration file by running the following:

cd /etc/apache2/sites-available

nano waitercaller.conf

Chapter 9

[145]

Add the following configuration data to the waitercaller.conf file we just created:

<VirtualHost *>

 WSGIScriptAlias / /var/www/waitercaller/waitercaller.wsgi
 WSGIDaemonProcess waitercaller
 <Directory /var/www/waitercaller>
 WSGIProcessGroup waitercaller
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Quit Nano, saving the new file as before. Now, to disable our crimemap project as the
default site and enable our new project instead, run the following commands:

sudo a2dissite crimemap.conf

sudo a2ensite waitercaller.conf

sudo service apache2 reload

Verify that everything worked by visiting the IP address of your VPS in your web
browser. You should see the Under construction string. Have another look at your
configuration and log files if things don't work out as expected.

Using Bootstrap to kick-start our
application
In our previous projects, we spent quite a bit of time on frontend work, fiddling
around with CSS and HTML, and we didn't even touch on some of the frontend
problems that web application developers need to be aware of, such as making
sure our content looks good and functions correctly on all devices of all screen
sizes running any browser on any operating system. This diversity of browsers and
devices as well as the inconsistent way in which each of them implements certain
JavaScript, HTML, and CSS functionality is one of the biggest challenges of web
development, and there is no silver bullet to solve the problem. However, frontend
frameworks such as Bootstrap can take away some of the pain, providing shortcuts
for developers to improve their user experience.

Building a Waiter Caller App

[146]

Introducing Bootstrap
Bootstrap was developed by Twitter and is released under an open license. It can
greatly speed up CSS development as it provides many styles for different HTML
layouts and form inputs. It can also provide responsiveness; that is, it can allow your
website to automatically change the layout of certain elements based on the screen
size of your user's device. We'll discuss exactly what this means for us and for this
project later in the chapter.

Bootstrap has faced some criticism, but it still holds its popularity. There
are many alternatives with different strengths and weaknesses. As
modern web development is a fast-evolving field, there are also many
new frameworks that appear regularly. Existing frameworks often get
major updates and don't provide backward compatibility to old versions.
For important production web applications, current research into what
best fits the specific needs of this project is always crucial.

Bootstrap's main offerings are reusable in CSS and JavaScript modules. We'll mainly
use it for its CSS components.

Take a look at Bootstrap's homepage at http://getbootstrap.com/ as well as
the subpages at http://getbootstrap.com/getting-started/#examples and
http://getbootstrap.com/components/ to get an idea of what Bootstrap provides.

Instead of writing CSS from scratch, Bootstrap allows us to use various inputs,
icons, navigation bars, and other often-needed components of a website that look
good by default.

Downloading Bootstrap
There are a few ways to install Bootstrap, but keeping in mind that Bootstrap can
be thought of as a collection of some JavaScript, CSS, and icon files, we will not do
anything too fancy. We can simply download a .zip file of the compiled code files
and use these files in our local project. We'll include bootstrap in our git repository,
so there is no need to install it on our VPS as well. Perform the following steps:

1. Head over to http://getbootstrap.com/getting-started/#download
and select the Download Bootstrap option, which should be the compiled
and minified version without documentation.

http://getbootstrap.com/
http://getbootstrap.com/getting-started/#examples
http://getbootstrap.com/components/
http://getbootstrap.com/getting-started/#download

Chapter 9

[147]

2. Unzip the file you downloaded, and you'll find a single directory called
bootstrap-3.x.x (here, the repeated letter x represents numbers that
indicate which version of Bootstrap is contained). Inside the directory,
there will be some subdirectories, probably js, css, and fonts.

3. Copy the js, css, and fonts directories to the static directory of the
waitercaller project. Your project should now have the following structure:
waitercaller/
templates
 home.html
static
 css/
 fonts/
 js
.gitignore
waitercaller.py

Because of the regular Bootstrap updates, we included a complete copy of the code
for Bootstrap 3.3.5 in the accompanying code bundle (the latest version during the
writing of this book). While the latest version is probably better, it might not be
compatible with the examples we give. You can choose to test the waters with the
version we provide, knowing that the examples should work as expected, or jump in
at the deep end and, if necessary, try to work out how to adapt the examples to the
newer Bootstrap code.

Bootstrap templates
Bootstrap strongly encourages users to build customized frontend pages instead of
simply using existing templates. You've probably noticed a lot of modern web pages
look very similar; this is because frontend designing is difficult, and people like
taking shortcuts. As this book focuses on Flask development, we'll also take a bit of
a frontend shortcut and start with one of the example template files that Bootstrap
provides. The template file we'll work with can be seen at http://getbootstrap.
com/examples/jumbotron/, and the adaptation for our project can be found in the
accompanying code bundle for this chapter at tempates/home.html. You can note
from the similarity of the two files that we didn't have to do too much work to get a
basic web page that also looks good.

http://getbootstrap.com/examples/jumbotron/
http://getbootstrap.com/examples/jumbotron/

Building a Waiter Caller App

[148]

Copy the code from the templates/home.html file in the code bundle to the same
place in your own project directory that we created earlier. If you included all the
Bootstrap files properly in your static folder, opening this new file directly in your
web browser will result in a page that looks similar to the following screenshot.
(Note that at this stage, we still use pure HTML and none of the Jinja functionality,
so you can just open the file locally in your web browser instead of serving it from a
Flask application.):

We can note the advantages of the styling of inputs, headers, the navigation bar, and
Jumbotron (the gray bar near the top with the oversized Waiter Caller text in it) that
we can achieve with very little code. However, perhaps the most significant time-
saving element of using Bootstrap is the responsiveness that our site has. Bootstrap is
based on a grid layout, which means that different elements of the grid can rearrange
themselves to better fit on any device. Note this part of HTML from the template:

<div class="row">
 <div class="col-md-4">
 <h2>Simple</h2>

A "row" has space for 12 columns. Our three main content elements below the
Jumbotron each take up four columns, thus filling the row (4 x 3 = 12). We specified
this using the class="col-md-4" attribute. Think of this as a medium (md) column
of size four. You can read more about how the grid system works and take a look at
some examples at http://getbootstrap.com/css/.

http://getbootstrap.com/css/

Chapter 9

[149]

There's also some code that doesn't look used in the preceding screenshot, similar
to this:

<button type="button" class="navbar-toggle collapsed" data-
 toggle="collapse" data-target="#navbar" aria-expanded="false"
 aria-controls="navbar">

The two preceding excerpts are perhaps the most important components in making
our web application responsive. To understand what this means, resize your browser
window while the page is open. This simulates how our page will be seen on smaller
devices, such as phones and tablets. It should look similar to the following screenshot:

We can note that our three main content elements that used the Bootstrap grid
functionality are now arranged beneath each other instead of side by side. This is
ideal for smaller devices in which users are more used to scrolling down than to
looking for more content on the side. Our navigation bar has also become more
concise with the login inputs now hidden.

Building a Waiter Caller App

[150]

These can be revealed by selecting the hamburger icon in the upper right-hand corner;
this is a controversial, but highly prevalent, element in web development. Most
users instinctively know that they can touch the icon to get some form of menu or
expansion, but there are many criticisms of using this technique. For now, we'll just
accept this as normal practice and not go into the problems behind it. It's definitely
better than trying to display exactly the same content no matter the screen size and
having our users zoom into the page section by section, depending on which part
they need to see.

Adding user account control to our
application
For user account control, a user is expected to log in and authenticate using a
password. For example, when you log in to your Webmail account, you enter
your password upon visiting the page. Thereafter, all your actions are taken as
authenticated; that is, you do not have to enter your password again when you
send an e-mail. The Webmail client remembers that you are logged in, and you are
therefore allowed to complete certain actions.

However, HTTP is a stateless protocol, which means that we have no direct way of
knowing that the user who logged in is the same user who made the request to send
an e-mail. As a workaround for this problem, we will give the user a cookie when he
or she logs in initially, and the user's browser will then send this cookie to us with
every subsequent request. We'll use our database to keep track of which users are
currently logged in. This allows us to authenticate the user for every request without
requesting the user's password multiple times.

We could implement this from scratch using Flask cookies in a similar way to what we
saw in our Headlines project. However, there are numerous steps that we would need
to implement, such as selecting which pages in our application require authentication
and ensuring that the cookie is secure, and be involved in deciding what information
to store in the cookie.

Instead, we'll go up one level of abstraction and use the Flask-Login extension.

Introducing Flask-Login
Flask-Login is a Flask extension that implements the groundwork required for
all user account control systems. To use this, we need to install it through pip and
then create a user class that follows a specific pattern. You can find a summary of
Flask-Login as well as comprehensive documentation at https://flask-login.
readthedocs.org/en/latest/.

https://flask-login.readthedocs.org/en/latest/
https://flask-login.readthedocs.org/en/latest/

Chapter 9

[151]

Installing and importing Flask-Login
To install Flask-Login, run the following command:

pip install --user flask-login

As with all the Python modules we install, remember to do this both locally and on
your VPS.

To begin with, we'll add the most basic login functionality possible. Our application
will display You are logged in for users who have authenticated, but users who do
not enter a correct password will not be able to see the message.

Using Flask extensions
When we install Flask extensions, we can automatically access them through the
flask.ext path. The first class we'll use from the Flask-Login extension is the
so-called LoginManager class. We'll also use the @login_required decorator to
specify which routes are restricted to users who are logged in. Add the following
imports to your waitercaller.py file:

from flask.ext.login import LoginManager
from flask.ext.login import login_required

Now, we need to connect the extension to our Flask app. In a pattern that will
become familiar as we use more Flask extensions, add the following line to
waitercaller.py directly below the place where you create the app variable:

app = Flask(__name__)
login_manager = LoginManager(app)

The LoginManager class we instantiated now has a reference to our application.
We'll use this new LoginManager class to—you guessed it—manage logins for
our application.

Adding a restricted route
Now, let's add a route to our application at /account and make sure that only
authenticated users can view this page. The easy part of this step is to make sure
that non authenticated users can't see the page, so we'll start with this.

First, we want our application to render our Bootstrap template by default. Add the
following route to the waitercaller.py file:

@app.route("/")
def home():
 return render_template("home.html")

Building a Waiter Caller App

[152]

Now, we'll add a restricted route that users who aren't logged in can't see. Add the
following function to waitercaller.py:

@app.route("/account")
@login_required
def account():
 return "You are logged in"

Note that we're using the @login_required decorator. Similarly to the @app.route
decorator, this is a function that takes the function below it as input and returns a
modified function. In this case, instead of the routing magic, it'll verify that the user
is logged in, and if not, it'll redirect the user to an Unauthorized page instead of
returning the content we specified in the return statement. It's important that the
@app.route decorator is first and the @login_required one is below it, as in the
preceding example.

You've probably seen 404 page not found errors sometimes while
browsing the Web. While 404 is especially infamous, there are
many error codes that are part of the HTTP specification. Different
browsers may show different default error messages when these are
received, and it's also possible to define custom error pages to be
shown when the specified errors are hit.

As we haven't set up any of the login logic yet, no user should be able to authenticate
and view the new route we created. Start your Flask application locally and try to
visit the account route at localhost:5000/account. If all went well, you should see
an unauthorized error message similar to the following screenshot:

Authenticating a user
The Internet can be a dark and scary place. This is why you need to put passwords
into many web applications; the password proves that you are who you claim to
be. By telling us something that only you know, the web application knows you are
"you" and not an imposter.

Chapter 9

[153]

The simplest way to implement a password checking system would be to store
passwords associated with usernames in a database. When the user logs in, you
need to first verify that the username exists, and if it does, you need to verify that the
password the user just gave matches the one that he or she used when registering.

In practice, this is a terrible idea. Databases may be accessed by any number of
people, including employees of the company that runs the web application and,
potentially, hackers. Instead, we'll eventually store a cryptographic hash of the user's
password; however for now, to make sure our login system works, we'll work with
plaintext passwords.

We'll set up a mock database that is very similar to the one we used in our Crime
Map project and check whether we can allow a mock user to view our account page
if, and only if, the correct password is entered.

Creating a user class
As we are using the Flask-Login module, we need to create a User class that
conforms to a strict format. Flask-Login is flexible enough to allow some more
advanced login functionality, such as distinguishing between active and nonactive
accounts as well as anonymous users. We won't use these features, but we need to
create a User class that can work with Flask-Login, so we'll have some methods
that look redundant.

Create a new file called user.py in your waitercaller directory. Add the following
code to it:

class User:
 def __init__(self, email):
 self.email = email

 def get_id(self):
 return self.email

 def is_active(self):
 return True

 def is_anonymous(self):
 return False

 def is_authenticated(self):
 return True

Building a Waiter Caller App

[154]

Flask-Login requires that we implement a get_id() method in our User class that
returns a unique identifier for the user. We'll be using the user's e-mail address for
this, so in the get_id() function we can simply return that.

We'll regard all our users as having active accounts; so, in this method, which is
also required, we'll simply return True. The opposite goes for the is_anonymous()
function; while this is also required, we won't deal with the concept of anonymous
logins in our application, so we'll always return False.

The last function may look a bit odd; we'll always return True for is_
authenticated(). This is because we only create the user object when the correct
username and password combination is entered, so if the user object exists, it'll be
authenticated.

Mocking our database for users
We'll create a MockDBHelper class again and also create a configuration file to
indicate that this should be used locally when we test our application and don't
have access to the database. It needs to have a function that takes a username and
password and checks whether these exist in the database and are associated with
each other.

First, create a file called mockdbhelper.py in your waitercaller directory and add
the following code:

MOCK_USERS = {'test@example.com': '123456'}

class MockDBHelper:

 def get_user(self, email):
 if email in MOCK_USERS:
 return MOCK_USERS[email]
 return None

At the top, we have a dictionary that acts as the database storage. We have a single
get_user() method that checks whether a user exists in our database and returns
the password if it does.

Now, create a config.py file in the waitercaller directory and add the single line
as follows:

test = True

Chapter 9

[155]

As in our last project, this file will let our application know whether it is running in our
test (local) environment or in our production (VPS) one. Unlike our previous project,
we'll add other information into this file later that doesn't involve the database, which
is why we'll call it config.py instead of dbconfig.py. We don't want to check this file
into our git repository as it'll be different on our VPS and will also contain sensitive
database credentials that we don't want to store; so, create a .gitignore file in your
waitercaller directory with the following lines:

config.py
*.pyc

Logging in a user
Our template already has a login form set up that allows a user to enter an e-mail
and a password. We'll now set up functionality that allows us to enter and check
the input into this form against our mock database. If we enter an e-mail and
password that exist in our mock database, we'll log the user in and allow access to
our /account route. If not, we'll just redirect back to the home page (we'll look at
displaying feedback to a user who inputs invalid information in the next chapter in
the Adding user feedback using WTForms section).

Adding imports and configuration
We need to import the login_user function that is part of the Flask-Login
extension as well as our new User class code and database helper. Add the
following lines to your imports in waitercaller.py:

from flask.ext.login import login_user

from mockdbhelper import MockDBHelper as DBHelper
from user import User

As we don't have a database helper except for our mock one at the moment, we'll
always import the mock one. Later, we'll use the value in config.py to decide which
database helper to import—the real or mock one—as we did in our previous project.

We also need to create a DBHelper global class so that our application code can
easily talk to our database. Add the following line beneath the import section of
waitercaller.py:

DB = DBHelper()

Building a Waiter Caller App

[156]

Finally, we also need to configure a secret key for our application. This is used to
cryptographically sign the session information cookies that Flask-Login hands
out to our users when they log in. Signing the cookies prevents our users from
editing them manually, which helps prevent fraudulent logins. For this step, you
should create a long and secure secret key; you will never have to remember it,
so don't think about it as you would about a password or passphrase. Although
randomly mashing your keyboard should be sufficient, humans are generally terrible
at creating unbiased randomness, so you could also use the following command
to create a random string using /dev/urandom (changing 100 to the number of
characters you want) via the following:

cat /dev/urandom | base64 | head -c 100 ; echo

Once you have a long random string of characters, add the following line to your
waitercaller.py file under the place where you declared the app variable,
substituting the random characters for your own:

app.secret_key = 'tPXJY3X37Qybz4QykV+hOyUxVQeEXf1Ao2C8upz+fGQXKsM'

Adding the login functionality
There are two main parts of logging a user in to consider. The first is when the user
enters an e-mail address and password to authenticate, and the second is when the
user does so by sending the required cookie—that is, he or she is still in the same
browser session as when a successful login was completed.

Writing the login function
We already created the stub of our login route for the first case, so now, we will
flesh that out a bit to check the input information against our database and use
Flask-Login to log the user in if the e-mail and password match.

We'll also introduce a cleaner way of calling one Flask route from a separate one.
Add the following lines to the imports section of waitercaller.py:

from flask import redirect
from flask import url_for

The first takes a URL and creates a response for a route that simply redirects
the user to the URL specified. The second builds a URL from a function name.
In Flask applications, you'll often see these two functions used together, as in the
following example.

Chapter 9

[157]

Write the login function in waitercaller.py to match what follows through
this code:

@app.route("/login", methods=["POST"])
def login():
 email = request.form.get("email")
 password = request.form.get("password")
 user_password = DB.get_user(email)
 if user_password and user_password == password:
 user = User(email)
 login_user(user)
 return redirect(url_for('account'))
 return home()

We also need to add import for the request library. Add the following line to the
import section of waitercaller.py:

from flask import request

We'll load the user's input into email and password variables and then load the
stored password into a user_password variable. The if statement is verbose as we
explicitly verified that a password was returned (that is, we verified that the user
exists) and that the password was correct, even though the second condition implies
the first. Later on, we'll talk about the trade-off of differentiating between the two
conditions when giving feedback to our user.

If everything is valid, we will create a User object from the e-mail address, now
using the e-mail address as the unique identifier required by Flask login. We will
then pass our User object to the Flask-Login module's login_user() function so
that it can handle the authentication magic. If the login is successful, we will redirect
the user to the account page. As the user is now logged in, this will return the "You
are logged in" string instead of the "Unauthorized" error we got before.

Note that we will create a URL for our account page using the url_for() function.
We will pass the result of this into the redirect() function so that the user is taken
from the /login route to the /account one. This is preferable to simply using
the following:

return account()

Our intention is more explicit, and the user will see the correct URL in the browser
(that is, both will take the user to the /account page), but if we don't use the
redirect() function, /login will still be displayed in the browser even on
the /account page.

Building a Waiter Caller App

[158]

Creating the load_user function
If the user has already logged in, their browser will send us information through the
cookie that Flask-Login gave them when we called the login_user function. This
cookie contains a reference to the unique identifier we specified when we created our
User object—in our case, the e-mail address.

Flask-Login has an existing function that we called user_loader, which will
handle this for us; we just need to use it as a decorator for our own function that
checks the database to make sure the user exists and creates a User object from the
identifier we are given.

Add the following function to your waitercaller.py file:

@login_manager.user_loader
def load_user(user_id):
 user_password = DB.get_user(user_id)
 if user_password:
 return User(user_id)

The decorator indicates to Flask-Login that this is the function we want to use to
handle users who already have a cookie assigned, and it'll pass the user_id variable
from the cookie to this function whenever a user visits our site, which already
has one. Similarly to what we did before, we will check whether the user is in our
database (user_password will be blank if user_id is invalid), and if it is, we will
recreate the User object. We'll never explicitly call this function or use the result as
it'll only be used by the Flask-Login code, but our application will throw an error if
a user who is given a cookie by our login() function visits the site and Flask-Login
can't find an implementation for this user_loader() function.

It might seem unnecessary to check the database in this step considering we gave
the user a supposedly tamper-proof token that proves that he or she is a valid user,
but it is in fact necessary as the database may have been updated since the user last
logged in. If we make the user's session token valid for a long time (recall that in our
Headlines project, we made the cookies last for a year), there is the possibility that
the user's account will have been modified or deleted since the cookie was assigned.

Checking the login functionality
It's time to give our new login functionality a try! Fire up the waitercaller.py
file locally and visit localhost:5000 in your web browser. Type in the e-mail ID
test@example.com and password 123456 from our mock database and hit the login
button. You should be redirected to http://localhost:5000/account and view the
You are logged in message.

Chapter 9

[159]

Close your browser and reopen it, this time visiting localhost:5000/account
directly. As we didn't tell Flask-Login to remember users, you should now see the
Unauthorized error again.

Because of the nature of our application, we would expect most users to want to stay
logged in so that the restaurant staff can simply open the page in the morning and use
the functionality straightaway. Flask-Login makes this change very straightforward.
Simply change the line of your login() function that reads the following:

 login_user(user)

Your new login() function should now read:

login_user(user, remember=True)

Now, if you repeat the preceding steps, you should view the You are logged in
message as shown in the following screenshot, even after restarting your browser:

Now that we can log a user in, let's take a look at how we can allow the user to log
out as well.

Logging out a user
Flask-Login provides a logout function that works straight out of the box.
All we have to do is link it up to a route. Add the following route to your
waitercaller.py file:

@app.route("/logout")
def logout():
 logout_user()
 return redirect(url_for("home"))

Building a Waiter Caller App

[160]

Then, add the import for the logout_user() function to the imports section of
waitercaller.py:

from flask.ext.login import logout_user

Note here that there's no need to pass the User object to Flask-Login for this call;
the logout() function simply removes the session cookie from the user's browser.
Once the user is logged out, we can redirect them back to the home page.

Visit localhost:5000/logout in your browser and then attempt to visit
localhost:5000/account again. You should see the Unauthorized error again as
the test@example.com user got logged out.

Registering a user
It's great that we can log users in, but at the moment we can only do so with the
mock user that we hardcoded into our database. We need to be able to add new
users to our database when the registration form is filled out. We'll still do all of this
through our mock database, so every time our application is restarted, all the users
will be lost (they will only be saved in the local Python dictionary variable, which is
lost when the application is terminated).

We mentioned that storing the users' passwords was a very bad idea; so first, we'll
take a brief look at how cryptographic hashing works and how we can manage
passwords more securely.

Managing passwords with cryptographic hashes
Instead of storing the password, we want to store something that is derived from
the password. When the user registers and gives us a password, we'll run some
modification on it and store the result of the modification instead. Then, the next
time the user visits our site and uses the password to log in, we can run the same
modification on the input password and verify that the result matches what we stored.

The catch is that we want our modification to be nonreversible; that is, someone who
has access to the modified password should not be able to deduce the original.

Enter hash functions. These little pieces of mathematical wizardry take a string as
input and return a (big) number as output. The same string input will always result
in the same output, but it is almost impossible for two different inputs to produce
the same output. Hash functions are so-called one-way functions as it is provably
impossible to deduce the input if you only have the output.

Chapter 9

[161]

Password storage and management is a big topic that we can only
touch on in this project. For more information on most things regarding
information security, www.owasp.org is a good resource. Their
comprehensive guide to storing passwords securely can be found at
https://www.owasp.org/index.php/Password_Storage_
Cheat_Sheet.

Python hashlib
Let's take a look at how to use hash functions in Python. Run the following in a
Python shell:

import hashlib

hashlib.sha512('123456').hexdigest()

As output, you should see the hash ba3253876aed6bc22d4a6ff53
d8406c6ad864195ed144ab5c87621b6c233b548baeae6956df346ec8c17f5ea
10f35ee3cbc514797ed7ddd3145464e2a0bab413, as shown in the following screenshot:

The random-looking string of hexadecimal characters is the sha512 hash of the
'123456' string, and this is what we will store in our database. Every time the user
enters the plaintext password, we'll run it through the hash function and verify that
the two hashes meet up. If an attacker or employee sees the hash in the database, they
cannot masquerade as the user because they cannot deduce '123456' from the hash.

www.owasp.org
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Building a Waiter Caller App

[162]

Reversing hashes
Actually, the heading of this section isn't entirely true. While there is no way to reverse
a hash and write a function that takes the preceding hexadecimal string as input and
produces '123456' as output, people can be pretty determined. The hacker may still
try every possible likely input and run it through the same hash function and keep
doing this until the hashes match up. When the hacker comes across an input that
produces ba3253876aed6bc22d4a6ff53d8406c6ad864195ed144ab5c87621b6c233b548
baeae6956df346ec8c17f5ea10f35ee3cbc514797ed7ddd3145464e2a0bab413 as an output,
he has effectively cracked the password.

However, hashing functions tend to need a lot of processing power, so it is not
practical to run through large amounts of input (known as brute forcing). People
have also created so-called rainbow tables with all common inputs precomputed
and stored in a database so that the results can be found instantly. This is a classic
space-time trade-off that is so often seen in computer science. If we compute hashes
for all possible inputs, it will take a long time; if we want to compute every possible
combination in advance so that we can look up the results instantly, we need a lot of
storage space.

If you go to a hash reversal website, such as http://md5decrypt.net/en/Sha512/,
and input the exact hex string you noted here, it'll tell you that the decrypted version
is 123456.

It didn't actually try every possible combination of inputs in the claimed 0.143
seconds, but it stored the answer from a previous time when the hash was computed.
Such sites have a large database containing mappings and plaintext strings along
with their hashed equivalents.

http://md5decrypt.net/en/Sha512/

Chapter 9

[163]

If you hash a string such as b^78asdflkjwe@#xx...&AFs[--l and paste the
resulting hash into the md5decrypt website, you'll note that the string is not common
enough for this particular site to have precomputed, and instead of getting the plain
text back again, you'll get a screen that looks similar to the following screenshot:

We want all of the passwords we store to be complicated enough to not exist in
precomputed hash tables. However, our users are more likely to choose passwords
that are common enough that they have been precomputed. The solution is to add
what is known as salt to our passwords before we store them.

Salting passwords
As users tend to use weak passwords, such as 123456, that quite likely exist in
precomputed hash tables, we want to do our users a favor and add some random
value to their passwords when we store them. This makes it even more difficult
for a malicious attacker who has access to the stored hash to gain the user's private
password, even though we will store the random value we used with the password.
This is known as salting the password; similarly to salting food, it is easy for us to
add some salt to the password, but removing the salt is hopefully impossible.

In summary, we want to:

• Accept a plaintext password from the user at registration time
• Add some random value (salt) to this password to strengthen it
• Hash the concatenation of the password and salt
• Store the hash and salt

Building a Waiter Caller App

[164]

When the user logs in, we need to:

• Take the plaintext password from the user
• Find the stored salt in our database and add it to the user's input
• Hash the concatenation of the password and salt
• Verify that the result matches what we previously stored

Implementing secure password storage in Python
To implement the preceding, we'll create a very small PasswordHelper class that
will take care of the hashing and generation of random salts. Although this is very
little code, when we use the standard hashlib, os, and base64 Python libraries, it
is good practice to abstract all the cryptography logic to its own class. That way, if
we change how we implement password management, we can make most of our
changes to this new class and not have to touch the main application code.

We also need to make some changes to our login() function, flesh out our
registration() function, and create a new method for our database helper
code that will add a new user to our mock database.

Creating the PasswordHelper class
Let's start with PasswordHelper. Create a file called passwordhelper.py in your
waitercaller directory and add the following code to it:

import hashlib
import os
import base64

class PasswordHelper:

 def get_hash(self, plain):
 return hashlib.sha512(plain).hexdigest()

 def get_salt(self):
 return base64.b64encode(os.urandom(20))

 def validate_password(self, plain, salt, expected):
 return self.get_hash(plain + salt) == expected

Chapter 9

[165]

The first two methods are used when a user registers for the first time and can be
explained as follows:

• The get_hash() method is just a wrapper of the sha512 hash function that
we looked at earlier. We'll use this to create the final hash that we will store
in our database.

• The get_salt() method uses os.urandom() to generate a cryptographically
secure random string. We will encode this as a base64 string as the random
string may contain any bytes, some of which we may have issues with
storing in our database.

The validate_password() method is used when the user logs in and gives us the
original plaintext password again. We'll pass in what the user gave us (the plain
parameter), the salt that we stored when they registered, and verify that hashing the
two produces the same hash that we stored (the expected parameter).

Updating our database code
We now need to store a password and salt associated with each user; we can't use
the simple e-mail and password dictionary that we had before. Instead, for our mock
database, we'll use a list of dictionaries, with every piece of information we need to
store having a key and value.

We'll also update the code in mockdbhelper.py to read as follows:

MOCK_USERS = [{"email": "test@example.com", "salt":
 "8Fb23mMNHD5Zb8pr2qWA3PE9bH0=", "hashed":
 "1736f83698df3f8153c1fbd6ce2840f8aace4f200771a46672635374073cc876c
 "f0aa6a31f780e576578f791b5555b50df46303f0c3a7f2d21f91aa1429ac22e"}]

class MockDBHelper:
 def get_user(self, email):
 user = [x for x in MOCK_USERS if x.get("email") == email]
 if user:
 return user[0]
 return None

 def add_user(self, email, salt, hashed):
MOCK_USERS.append({"email": email, "salt": salt, "hashed":hashed})

Building a Waiter Caller App

[166]

Our mock user still has the password 123456, but a potential attacker can no
longer work this out by looking up the hash in a rainbow table. We also created the
add_user() function, which takes the email, salt, and hashed password for a new
user and stores a record of this. Our get_user() method now needs to loop through
all the mock users to find out whether any match the input e-mail address. This is
inefficient but will be handled more efficiently by our database, and as we will never
have hundreds of mock users, we don't need to worry about this.

Updating our application code
In our main waitercaller.py file, we need to add another import for our password
helper and instantiate a global instance of our password helper class so that we can
use it in our register() and login() functions. We also need to modify our login()
function to account for the new database model and flesh out our register() function
to perform some validation and call the database code to add a new user.

Add the following line to the imports section of waitercaller.py:

from passwordhelper import PasswordHelper

Then, add the following near the place where you created the DBHelper() object:

PH = PasswordHelper()

Now, modify the login() function to read as follows:

@app.route("/login", methods=["POST"])
def login():
 email = request.form.get("email")
 password = request.form.get("password")
 stored_user = DB.get_user(email)
 if stored_user and PH.validate_password(password,
 stored_user['salt'], stored_user['hashed']):

 user = User(email)
 login_user(user, remember=True)
 return redirect(url_for('account'))
 return home()

The only real change is in the if statement, in which we will now use the password
helper to validate the password using the salt and user-provided password. We will
also change the variable name of the user to stored_user as this is now a dictionary
instead of just the password value it used to be.

Chapter 9

[167]

Finally, we need to build the register() function. This will use the password and
database helper to create a new salted and hashed password and store this along
with the user's e-mail address in our database.

Add a /register route and associated function to the waitercaller.py file with
the following code:

@app.route("/register", methods=["POST"])
def register():
 email = request.form.get("email")
 pw1 = request.form.get("password")
 pw2 = request.form.get("password2")
 if not pw1 == pw2:
 return redirect(url_for('home'))
 if DB.get_user(email):
 return redirect(url_for('home'))
 salt = PH.get_salt()
 hashed = PH.get_hash(pw1 + salt)
 DB.add_user(email, salt, hashed)
 return redirect(url_for('home'))

We asked the user to input their password twice on our registration form as it's
easy for users to make a typo when they register and then not be able to access their
account (as they registered with a different password from the one they meant to).
Therefore, in this step, we can confirm that the two passwords entered by the user
are the same.

We also verified that the user doesn't already exist as each user needs to use a unique
e-mail address.

Finally, we generated a salt, created a hash from the password and salt, and stored
this in our database. Then, we redirected the user back to homepage, testing our
registration functionality.

It's time to give the application a test run again. Close your browser and restart the
application locally. Visit the homepage and register an account by choosing an e-mail
and password. When you get redirected to the homepage after registration, log in
using the same username and password you just registered with. If all went well,
you'll see the You are logged in message. Again, visit http://localhost:5000/
logout in order to log out.

Building a Waiter Caller App

[168]

Summary
In this chapter, we looked at how to use Bootstrap to make our application look good
out of the box and to be responsive based on our user's screen size. We got a basic
User Account Control system up and running, and we can register users, log users
in, and log them out again.

We also spent some time looking at how to securely store passwords using
cryptographic hash functions and salts.

In the next chapter, we'll build out the functionality of our application, which we
discussed in the project outline at the start of this chapter. We'll also look at an easier
way to create the forms that our visitors will use to interact with our application.

[169]

Template Inheritance and
WTForms in Waiter Caller

Project
In the previous chapter, we created a rudimentary user account system. However,
we only made a very simple route access controlled—the one that simply showed
the string "You are logged in". In this chapter, we'll add some more of the desired
functionality, and allow logged-in users to add restaurant tables, see the URLs
associated with these tables, and view attention requests from customers. One of
the problems we'll come across is that of wanting to reuse the same elements for
different pages of our application. You'll see how to solve this problem without
code duplication by using Jinja's inheritance system. As mentioned in the previous
chapter, we do not communicate very well with our user when mistakes, such
as entering an incorrect password, are made. To address this, we'll take a look
at another Flask extension, WTForms, and see how it can simplify creating and
validating forms.

In this chapter, we'll cover the following topics:

• Adding account and dashboard pages to our application
• Shortening URLs using the bitly API
• Adding functionality for handling attention requests
• Adding user feedback through WTForms

Template Inheritance and WTForms in Waiter Caller Project

[170]

Adding the Account and Dashboard
pages
We want to add two new pages to our application: 'Dashboard', where all requests
from the patrons of a particular restaurant can be seen, and 'Account', where the
restaurants can manage their tables and view the URLs that they need to make
available on the tables.

We could simply create two new .html files in our templates directory and
write the HTML from scratch. But we'll soon find that we need many of the same
elements from our home page (at the very least, the parts that include and configure
Bootstrap). Then we'll be tempted to just copy and paste the HTML from the home
page and start working on our new page from there.

Introducing Jinja templates
Copying and pasting code is usually a sign that something is wrong. In application
code, it means that you haven't modularized your code well, and you need to create
some more classes and probably add a couple of import statements to include the
reused code wherever it is needed. Using Jinja, we can follow a very similar pattern,
by using template inheritance. We'll first split our home page into two separate
template files, base.html and home.html, with all the elements that we want to
reuse in the base file. We can then have all three of our other pages (Home, Account,
and Dashboard) inherit from the base template, and only write the code that differs
across the three.

Jinja handles inheritance by using the concept of blocks. Each parent template can
have named blocks, and a child that extends a parent can fill in these blocks with its
own custom content. The Jinja inheritance system is quite powerful, and accounts for
nested blocks and overwriting existing blocks. However, we're only going to scratch
the surface of its functionality. We'll have our base template contain all the reusable
code, and it'll contain one blank block named content and one named navbar. Each
of our three pages will extend from the base template, providing their own version
of the content block (for the main page content) and the navigation bar. We'll need to
make the navigation bar dynamic, because the Login fields of the bar at the top of the
page will only appear if the user isn't logged in.

Chapter 10

[171]

Creating the base template
Create a new file called base.html in your templates directory, and insert the
following code:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <title>Waiter Caller</title>

 <!-- Bootstrap core CSS -->
 <link href="../static/css/bootstrap.min.css" rel="stylesheet">

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5
 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/
 html5shiv.min.js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/
 respond.min.js"></script>
 <![endif]-->

 </head>
 <body>

 {% block navbar %}
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 Dashboard
 Account
 </div>
 </div>
 </nav>
 {% endblock %}

 {% block content %}
 {% endblock %}

Template Inheritance and WTForms in Waiter Caller Project

[172]

 <div class="container">

 <hr>
 <footer>
 <p>© A. Non 2015</p>
 </footer>
 </div>
 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster
 -->
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/1.11.3/jquery.min.js"></script>
 <script src="../static/js/bootstrap.min.js"></script>
 </body>

</html>

In the preceding code, we have all our header and our page footer code—elements that
will be common across all our pages—in one file. We define two blocks, using the Jinja
syntax, which is similar to the other Jinja statements that we have seen, namely:

{% block content %}
{% endblock %}

And

{% block navbar %}
[...]
{% endblock %}

In this example, content and navbar are the names of our blocks, and we can
choose these freely, while block and endblock are Jinja keywords, and the {% %}
symbols are used to indicate the Jinja statements as in earlier examples. This is in
itself a completely valid Jinja template; even though the content block is empty, we
can render the template directly from our Flask app, and we would see a page that
simply pretended that the content block didn't exist.

We can also extend this template, though; that is, we can create children using it as
the parent. Children have the option of overwriting any of the specified blocks simply
by declaring them again. We declared navbar as a block as our home page will use
the navigation bar that we wrote earlier—the one that includes a login form. Once
logged in, however, our pages for dashboard and account will have exactly the same
navigation bar—the one we define in our base template.

Chapter 10

[173]

Creating the dashboard template
Our dashboard page will eventually show all customers' requests for service so that a
waiter can easily see which tables need attention. For now though, we'll just create an
outline of the page. Create a new file in your templates directory called dashboard.
html, and add the following code:

{% extends "base.html" %}

{% block content %}
 <div class="jumbotron">
 <div class="container">
 <h1>Dashboard</h1>
 <p>View all patron requests below</p>
 </div>
 </div>

 <div class="container">
 <div class="row">
 <div class="col-md-12">
 <h2>Requests</h2>
 <p>All your customers are currently satisfied - no
 requests</p>
 </div>
 </div>
 </div>
{% endblock %}

The most important line in the preceding code snippet is the first one—we use the
Jinja extends keyword to indicate that this template should inherit all the code
contained in another template. The keyword is followed by the filename of the
template to inherit from, contained within inverted commas.

Following that, we simply create the content block in exactly the same way we did in
our base template. This time, instead of leaving it blank, we add some HTML to be
displayed on our dashboard page.

Creating the account template
The account page will be the one where the user can add new tables, delete tables,
or get the URL for the existing tables. Again, as we do not yet have any application
code to represent a table, we'll just create an outline of the page. Create a file called
account.html in your templates directory, and add the following code:

{% extends "base.html" %}

{% block content %}
 <div class="jumbotron">

Template Inheritance and WTForms in Waiter Caller Project

[174]

 <div class="container">
 <h1>Account</h1>
 <p>Manage tables and get URLs</p>
 </div>
 </div>

 <div class="container">
 <div class="row">
 <div class="col-md-12">
 <h2>Tables</h2>

 </div>
 </div>
 </div>
{% endblock %}

Creating the home template
The home.html template contains the entire code specific to our home page, and
which isn't part of the base template. The code can be seen in the code bundle as
templates/home_1.html, but is not included here as it is too long. Have a look at
it and see how we define a new navbar block which contains the login form, and
which overrides the default one provided in the base template. Similarly, it defines
the content block, which replaces the empty content block that we defined in our
base template. The end result hasn't changed—we'll still see exactly the same home
page, but now the code is split between the base.html and home.html files, allowing
us to reuse large parts of it for the new pages that we created previously.

Adding the routing code
We need our Python code to return the new template files when /account and /
dashboard are visited. Add the dashboard() function to your waitercaller.py
file, and modify the account function() to read as follows:

@app.route("/dashboard")
@login_required
def dashboard():
 return render_template("dashboard.html")

@app.route("/account")
@login_required
def account():
 return render_template("account.html")

Give the new pages a go! Start the application locally as before, by running:

python waitercaller.py

Chapter 10

[175]

Navigate to http://localhost:5000 to see the home page. Log in using the form,
and now, instead of the bare message we had before, you should see a nicer looking
skeleton of the Account page, as seen in the following image:

Click on the Dashboard link in the navigation bar at the top, and you should see the
skeleton for that page, too, as seen in the following image:

Template Inheritance and WTForms in Waiter Caller Project

[176]

Creating restaurant tables
Now we need to introduce the concept of a table to our application, and be able to
represent this both in our database and in our application code. A table should have
the following attributes:

• An ID number that uniquely identifies that table across all users of our app
• A name that is user-definable and unique within a specific user's tables
• An owner so that we will know to which user a table belongs

If we were following an Object Oriented Programming style religiously, we would
create a Table class which had these properties. We would then also create a bunch of
other classes for everything in our application. Following this approach, we would also
create methods to serialize each of our objects into something that can be stored in our
database, and more methods to deserialize them from the database back to objects.

For the sake of brevity, and because our model is simple enough, we'll be taking a
shortcut that is sure to offend some, and simply use Python dictionaries to represent
most of our objects. We'll see when we add MongoDB to our application that these
dictionaries will be trivial to write to and read from the database.

Writing the restaurant table code
Let's have a brief look at what our tables need to do. First, the user of our app will
need to be able to add and remove new tables on the account page—both initially
when an account is registered and later if changes need to be made. Secondly, the
user should be able to view the URL associated with each table, so that these URLs
can be printed and made available at the physical tables. When a new table is added,
we'll need to create a mock database.

We'll start by providing our users with an input box on the account page, where
they can input the name or number of a new table in order to create it. When a new
table is created, we'll create a unique ID number and use that to create a new URL.
We'll then use the bitly API to create a shortened version of the URL—one that our
users' patrons will be able to type into a smartphone more easily. We'll then store the
table name, ID, and shortened URL in our mock database.

Adding the create table form
In the account.html template, add the following directly beneath the line
<h2>Tables</h2>:

<h2>Add new table</h2>
<form class="form-inline" action="/account/createtable"
method="POST">

Chapter 10

[177]

 <input type="text" name="tablenumber"
 placeholder="Table number or name" class="form-control">
 <input type="submit" value="Create" class="btn btn-primary">
</form>

This is a very basic form with a single input for a new table name and a button
to submit the form. If you load the application and navigate to the Account page,
you should now see something like the following image:

Adding the create table route
Creating a table backend is not too complicated, but it has subtleties that are important
to understand. First, our users can give the table any name they want. For most users,
these names will probably just be incrementing numbers starting from 1 and ending
at the number of tables in the restaurant, as this is a common way for restaurants to
name their tables. Because many restaurant managers will be using our application,
we can't assume that these names will be unique across all accounts. Most users of our
application will probably have a table called 1. Therefore, when a restaurant patron
indicates that he or she is at Table 1 and wants service, we have to be able to pick the
correct Table 1 from potentially many restaurants. To solve this, each table in our
database will have a unique ID that we'll use for table identification in the URLs, but
we'll display the user-chosen name (for example, 1) on the Account page to allow our
users to easily manage their personal list of tables.

When we insert a new item into our database, we'll get the unique ID of that
item. But, because we want to use the ID as part of the URL, we get into a sort of
chicken-or-egg-first situation where we need to insert the table into the database in
order to get the ID, but we also need the ID in order to create the URL before we can
properly insert the table into the database.

To solve this problem, we have to insert a half-created table into our database to get
the ID, then use the ID to create the URL, and then update the table we just created
to associate it with the URL.

Template Inheritance and WTForms in Waiter Caller Project

[178]

Add the following route to your waitercaller.py file which does this (or rather,
will do this once we've created the required functions in our database code):

@app.route("/account/createtable", methods=["POST"])
@login_required
def account_createtable():
 tablename = request.form.get("tablenumber")
 tableid = DB.add_table(tablename, current_user.get_id())
 new_url = config.base_url + "newrequest/" + tableid
 DB.update_table(tableid, new_url)
 return redirect(url_for('account'))

Note that we structure all the functionality of our application that is related to our
account page under a sub-route /account/. We preface the function name for
routes that belong to the account with account_. This helps us have clearer sections
in our application code, which can become messy and unmaintainable as we add
more and more routes.

We have to associate each table with an owner, so we use the FlaskLogin current_
user functionality to get the currently logged-in user's ID. We're also going to use
our config.py file to define the base URL to be associated with the tables.

Add the following imports to waitercaller.py in order to use the current_user
functionality and access our config:

from flask.ext.login import current_user
import config

Add the following to the config.py file (remember, this isn't part of the Git
repository, so this value is only used for local development):

base_url = "http://127.0.0.1:5000/"

The preceding URL is exactly equivalent to localhost:5000 that we've been using,
as 127.0.0.1 is a special IP address that always points back to your own machine.
However, we'll use an IP address in our config instead of localhost to maintain
compatibility with the Bitly API that we'll use in the next section, Shortening URL's
using the bitly API, of this chapter.

Adding the create table database code
The mock database code for our tables is similar to that for our users and passwords.
Create the following list of dictionaries at the top of the mockdbhelper.py file to
store your tables:

MOCK_TABLES = [{"_id": "1", "number": "1", "owner":
"test@example.com","url": "mockurl"}]

Chapter 10

[179]

The preceding code also creates a single table, 1, and assigns it to our mock user.
Note that 1, which is the value of the _id key, is the ID number that, for our
production system, will be unique across all user accounts. The 1 that is the value of
the number key is the user-chosen value that might be duplicated across different users
of our system. Because we only have one test user, we'll simplify our mock code, and
always use the same value for both the unique ID and the user-chosen number.

For our mock database, adding a table is simply appending a new dictionary that
represents a table to our list of existing mock tables. Add the following method to the
mockdbhelper.py file:

def add_table(self, number, owner):
 MOCK_TABLES.append({"_id": number, "number": number, "owner":
 owner})
 return number

We return number from this function, which is the mock ID. In our test code, this is
the same value that was input to this function. In our real code, this number will be
the generated ID, and will be different from the input.

Finally, we need to add the update_table() method that will allow us to associate a
URL with a table. Add the following method to mockdbhelper.py:

def update_table(self, _id, url):
 for table in MOCK_TABLES:
 if table.get("_id") == _id:
 table["url"] = url
 break

Our application code gives the preceding method both the table ID generated by the
add_table() method and the URL to associate with the table. The update_table()
method then finds the correct table and associates the URL with the table. Again, the
for loop through a list might look inefficient as opposed to using a dictionary, but
it's important for our mock database code to use the same ideas as the real database
code that we'll write in the next chapter. As our real database will store a collection
of tables, our mock code emulates this by storing them in a list.

Adding the view table database code
We now have the functionality for adding new tables in place, but we can't see them
yet. We want all the existing tables to be listed on the account page so that we can see
which tables exist, have the ability to delete them, and view their URLs.

Template Inheritance and WTForms in Waiter Caller Project

[180]

Adding the following method to mockdbhelper.py will allow us to access the
existing tables of a specific user:

 def get_tables(self, owner_id):
 return MOCK_TABLES

Again, we simplify and have our test code ignore the owner_id argument and return
all the tables (as we only have one test user). However, it's important that our mock
methods take the same inputs and outputs as our real methods will, as we don't want
our application code to be aware of whether it is running production or test code.

Modifying the account route to pass table data
We should get the latest information about the tables from the database and display
these tables to the user each time our account page is loaded. Modify the /account
route in waitercaller.py to look as follows:

@app.route("/account")
@login_required
def account():
 tables = DB.get_tables(current_user.get_id())
 return render_template("account.html", tables=tables)

This preceding method now gets the tables from the database and passes the data
through to the template.

Modifying the template to show the tables
Our template now has access to the table data, so all we need to do is to loop through
each table and display the relevant information. The terminology used could get a bit
confusing at this point, as we will use an HTML table to display information about
our virtual restaurant tables, even though the uses of the word table are unrelated.
HTML tables are a way to display tabulated data, which in our case is data about the
restaurant tables.

In the account.html file, add the following code beneath the line <h2>tables</h2>:

<table class="table table-striped">
 <tr>
 <th>No.</th>
 <th>URL</th>
 <th>Delete</th>
 </tr>
 {% for table in tables %}
 <form class="form-inline" action="/account/deletetable">

Chapter 10

[181]

 <tr>
 <td>{{table.number}}</td>
 <td>{{table.url}}</td>
 <td><input type="submit" value="Delete"
 class="form-control"></td>
 <input type="text" name="tableid"
 value="{{table._id}}" hidden>
 </tr>
 </form>
 {% endfor %}
</table>

The preceding code creates a simple table of tables, displaying the table number
(user chosen), the URL, and a delete button for each table. Each table is, in fact, a
form that submits a request to delete that specific table. In order to do this, we also
use a hidden input containing the unique ID of each table. This ID is passed along
with the delete request so that our application code knows which table to delete
from the database.

Adding the delete table route to our backend code
Add the following route to your waitercaller.py file, which simply accepts the
table ID that needs to be deleted and then asks the database to delete it:

@app.route("/account/deletetable")
@login_required
def account_deletetable():
 tableid = request.args.get("tableid")
 DB.delete_table(tableid)
 return redirect(url_for('account'))

Create the following method in mockdbhelper.py, which accepts a table ID and
deletes that table:

 def delete_table(self, table_id):
 for i, table in enumerate(MOCK_TABLES):
 if table.get("_id") == table_id:
 del MOCK_TABLES[i]
 break

Similar to the update code that we wrote earlier, it's necessary to loop through the
mock tables to find the one with the correct ID before we can delete it.

Template Inheritance and WTForms in Waiter Caller Project

[182]

Testing the restaurant table code
We've added quite a lot of code to our application. Since a lot of the different sections
of code that we've added depend on each other, it has been difficult to actually
run the code while writing it. However, now we have the functionality to create,
view, and delete tables, so we can now give our application another test run. Fire
up the application, log in, and navigate to the Account page. You should see the
single mock table and be able to add more using the create table form. Play around
by adding new tables and deleting the existing ones. When you add tables, they
should get a URL associated with them based on their number (remember that for
our production application, this number will be a long unique identifier instead of
simply the number that we choose for our table). The interface should look like the
following image:

Also take another look at the mobile view for this page by resizing the browser
window, making it narrow enough to trigger the layout switch. Note that because
we've used Bootstrap's responsive layout features, the Delete buttons shunt up
closer to the URLs and the Create button moves beneath the text input, as in the
following image:

Chapter 10

[183]

This might not look quite as good as the full-sized view, but it'll certainly be helpful to
our visitors who want to use our site from their phones, as they won't need to worry
about zooming in or scrolling sideways to access all the functionality of our site.

Shortening URLs using the bitly API
Our users will not want to type in the long URLs that we currently provide for
calling a waiter to their table. We'll now look at using the bitly API to create shorter
equivalents of the URLs that we've already created. The shorter URLs, which can
be typed into address bars (especially on mobile devices) more easily, will then be
shown as being associated with the corresponding tables instead of the longer ones
we have now.

Template Inheritance and WTForms in Waiter Caller Project

[184]

Introducing Bitly
The premise behind Bitly—and many similar services—is simple. Given a URL of
arbitrary length, the service returns a shorter URL of the form bit.ly/XySDj72.
Bitly and similar services normally have very short root domains (bit.ly is five
letters), and they simply maintain a database that links the short URLs they create
to the longer ones input by the users. Because they use a combination of lower- and
uppercase characters as well as digits to create the shortened URLs, there is no
shortage of combinations to use, even while keeping the total length of the URL
very short.

Using the bitly API
As with the other APIs that we have used, bitly is free to use within certain
limitations, but requires registration in order to get an API token. The bitly API
is accessed over HTTPS and returns JSON responses (similar to what we've seen
before). To interface with the API, we'll use a few lines of Python along with the
urllib2 and json standard libraries.

Getting a bitly oauth token
At the time of writing, bitly offers two ways of authenticating with their API.
The first is to use an API token given to you when you register. The second way
is to use an oauth token. As API tokens are being deprecated by bitly, we'll be using
an oauth token.

The first step is to register an account on bitly.com and confirm your e-mail
address. Simply head over to bitly.com, hit the Sign up button, and give a
username, e-mail address and password. Click the confirmation link that they
send to the provided e-mail, and sign in to your bitly account.

To register for an oauth token, go to https://bitly.com/a/oauth_apps
and enter your password again when prompted. You should now see your
new oauth token displayed on the screen. Copy this, as we'll need it in the
Python code that we're about to write. It should look something like this:
ad922578a7a1c6065a3bb91bd62b02e52199afdb

bit.ly
bitly.com
bitly.com
https://bitly.com/a/oauth_apps

Chapter 10

[185]

Creating the bitlyhelper file
Following the pattern we've used throughout the building of this web application,
we'll create a BitlyHelper class to shorten the URLs. Again, this is good practice, as it
allows us to easily replace just this module with another link shortening service if we
ever need to. Create a file named bitlyhelper.py in your waitercaller directory
and add the following code, substituting your bitly oauth token as appropriate. The
token in the following snippet is valid for this Waiter Caller application. You should
substitute the token that you received by following the steps outlined above.

import urllib2
import json

TOKEN = "cc922578a7a1c6065a2aa91bc62b02e41a99afdb"
ROOT_URL = "https://api-ssl.bitly.com"
SHORTEN = "/v3/shorten?access_token={}&longUrl={}"

class BitlyHelper:

 def shorten_url(self, longurl):
 try:
 url = ROOT_URL + SHORTEN.format(TOKEN, longurl)
 response = urllib2.urlopen(url).read()
 jr = json.loads(response)
 return jr['data']['url']
 except Exception as e:
 print e

This class, BitlyHelper, provides a single method that takes in a long URL and
returns a short one. There should be nothing about the last code snippet that is
difficult to understand, as it only uses the ideas we've already seen while using
JSON-based APIs over HTTP.

Using the bitly module
To use our bitly code, we simply need to create a BitlyHelper object in our main
application code, and then use it to create a short URL every time a new restaurant
table is created. Modify the globals section of waitercaller.py as follows:

DB = DBHelper()
PH = PasswordHelper()
BH = BitlyHelper()

Template Inheritance and WTForms in Waiter Caller Project

[186]

And add the import for BitlyHelper() to the imports section of waitercaller.py:

from bitlyhelper import BitlyHelper

Now modify the createtable method to read as follows:

@app.route("/account/createtable", methods=["POST"])
@login_required
def account_createtable():
 tablename = request.form.get("tablenumber")
 tableid = DB.add_table(tablename, current_user.get_id())
 new_url = BH.shorten_url(config.base_url + "newrequest/" +
 tableid)

 DB.update_table(tableid, new_url)
 return redirect(url_for('account'))

Fire up the app and go to the account page again. Create a new table, and you should
see that the URL of the new table is a bitly URL. If you visit this URL in the browser,
you'll see that it automatically redirects to something like http://127.0.0.1/
newrequest/2 (which, in turn, should throw a server error at this point).

Now that we can associate a short URL with every new table created, we need to add
the idea of a request to our application, so that when our users' patrons visit these
URLs, we notify the restaurant of the request for attention.

Adding functionality to handle attention
requests
We need to deal with two aspects of attention requests. The first, as discussed earlier,
is to create new requests when a user visits a URL. The second is to allow the waiters
of the restaurant to view these requests and mark them as resolved.

Writing the attention request code
When a user visits a URL, we should create an attention request and store it in the
database. This attention request should contain:

• The time the request was made
• The table from which the request was made

As before, we'll just use a Python dictionary to represent the attention request object.
We need to have our application code create new attention requests and allow these
requests to be added, retrieved, and deleted from the database.

http://127.0.0.1/newrequest/2
http://127.0.0.1/newrequest/2

Chapter 10

[187]

Adding the attention request route
Add the following route to waitercaller.py:

@app.route("/newrequest/<tid>")
def new_request(tid):
 DB.add_request(tid, datetime.datetime.now())
 return "Your request has been logged and a waiter will be with
 you shortly"

This route matches a dynamic table ID. Since our URLs use the globally unique
table ID and not the user-chosen table number, we don't need to worry about which
restaurant owns the table. We tell our database to create a new request, which
contains the table ID and the current time. We then display a message to the patron,
notifying him or her that the request was successfully made. Note that this is the
only route for the application that our users' patrons will use. The rest of the routes
are all intended to be used only by the restaurant managers or waiters themselves.

We also need the Python datetime module to get the current time. Add the
following line to your imports section in waitercaller.py:

import datetime

Adding the attention request database code
The database code for the attention requests uses the same ideas as the code we
recently added for dealing with restaurant tables. Add the following global at the top
of mockdbhelper.py:

MOCK_REQUESTS = [{"_id": "1", "table_number": "1","table_id": "1",
 "time": datetime.datetime.now()}]

The preceding global creates a single mock attention request for table number 1
(an existing mock table) and sets the time of the request to be the time when we
started the waitercaller app by running:

python waitercaller.py

Whenever we make changes to our app during development, the server restarts,
and this time will also be updated to the current time whenever this happens.

We also need to add the import for the datetime module to the top of the dbconfig.
py file:

import datetime

Template Inheritance and WTForms in Waiter Caller Project

[188]

For the actual add_request() method, it is again important to distinguish between
the table number (user chosen) and the table ID (globally unique across all our
users). The URL used for creating the request made use of the globally unique ID,
but the waiters will want to see the human readable table name next to the request
notification. At the time of adding a request, we therefore find the table number
associated with the table ID and include that as part of the stored request.

Add the following method to mockdbhelper.py:

 def add_table(self, number, owner):
 MOCK_TABLES.append(
 {"_id": str(number), "number": number, "owner":
 owner})
 return number

Again, we use table_id as the unique ID for our dictionary that represents a request.
As before, when we add a real database, we will generate a new request ID here, which
will not be the same as our table ID.

Add the get and delete methods for attention
requests
While we are editing the database code, add the following methods as well:

def get_requests(self, owner_id):
 return MOCK_REQUESTS

def delete_request(self, request_id):
 for i, request [...]
 if requests [...]
 del MOCK_REQUESTS[i]
 break

The first method gets all attention requests for a specific user and will be used to
populate our dashboard page with all the unresolved requests that require attention
from waiters. The second deletes a specific request and will be used (also from the
dashboard page) when waiters mark a request as resolved.

If our Waiter Caller application aimed to provide more advanced
functionality, we might add a property to requests to mark them as
resolved, instead of deleting them outright. If we wanted to provide
an analysis on how many requests were being made, how long
they took on an average to be resolved, and so on, then keeping the
resolved requests would be essential. For our simple implementation,
resolved requests are of no further use, and we simply delete them.

Chapter 10

[189]

Modifying the dashboard route to use attention
requests
When the restaurant manager or waiter opens the dashboard of the app, they should
see all current attention requests along with the time when the request was made
(so that the patrons who have been waiting for longer can be prioritized). We have
the time the request was logged, so we'll calculate the time elapsed since the request
was made.

Modify the dashboard() route in waitercaller.py to read as follows:

@app.route("/dashboard")
@login_required
def dashboard():
 now = datetime.datetime.now()
 requests = DB.get_requests(current_user.get_id())
 for req in requests:
 deltaseconds = (now - req['time']).seconds
 req['wait_minutes'] = "{}.{}".format((deltaseconds/60),
 str(deltaseconds % 60).zfill(2))
 return render_template("dashboard.html", requests=requests)

The modified dashboard()route grabs all the attention requests that belong to the
currently logged in user, using current_user.get_id() as before. We calculate
a delta time for each request (the current time minus the request time) and add this
as an attribute for each request in our requests list. Then we pass the updated list
through to the template.

Modifying the template code to display attention
requests
We want our dashboard code to check if any attention requests exist and then to
display each of these in a way similar to the way the tables are displayed on the
account page. Every attention request should have a Resolve button to allow the
waiter to indicate that he has dealt with the request.

If no attention requests exist, we should display the same message we had
displayed on the dashboard page previously, indicating that all the patrons
are currently satisfied.

Template Inheritance and WTForms in Waiter Caller Project

[190]

Add the following code to the body of dashboard.html, removing the placeholder
statement that we added previously:

<h2>Requests</h2>
{% if requests %}
 <table class="table table-striped">
 <tr>
 <th>No.</th>
 <th>Wait</th>
 <th>Resolve</th>
 </tr>
 {% for request in requests %}
 <tr>
 <form class="form-inline" action="/dashboard/resolve">
 <td>{{request.table_number}}</td>
 <td>{{request.wait_minutes}}</td>
 <input type="text" name="request_id"
 value="{{request._id}}" hidden>
 <td><input type="submit" value="Resolve"
 class="btn btn-primary"></td>
 </form>
 </tr>
 {% endfor %}
 </table>
{% else %}
 <p>All your customers are currently satisfied - no requests</p>
{% endif %}

The preceding code is very similar to the table code we saw for the accounts template.
Instead of the Delete button, we have a Resolve button, which similarly uses a hidden
text input containing the request ID to resolve the correct attention request.

Adding the resolve request application code
Let's add the application code to handle resolving requests. Similar to the way we
used the sub-route /account for all our account functionality, we use /dashboard in
the form discussed earlier. Add the following route to waitercaller.py:

@app.route("/dashboard/resolve")
@login_required
def dashboard_resolve():
 request_id = request.args.get("request_id")
 DB.delete_request(request_id)
 return redirect(url_for('dashboard'))

Chapter 10

[191]

We've already added the database code to remove an attention request, so here we
simply need to call that code with the correct request ID, which we have from the
hidden field in our template.

With that, most of the functionality of our application should be testable. Let's try
it out!

Testing the attention request code
Fire up the app, and test out all the new functionality. First, navigate to the Account
page and then, in a new tab, navigate to the URL listed for the test table (or add a
new table and use the new URL to retest the earlier code as well). You should see the
'Your request has been logged and a waiter will be with you shortly' message as in
the following image:

Now go back to the application and navigate to the Dashboard page. You should
see the mock request as well as the new request you just created by visiting the URL,
as seen in the following screenshot:

Template Inheritance and WTForms in Waiter Caller Project

[192]

Refresh the page and note that the values in the 'Wait' column get incremented
appropriately (every refresh will recalculate the deltas in the application code).

Auto-refreshing the dashboard page
The waiters will not want to constantly refresh the dashboard in order to check for
new requests and to update the wait times on the existing one. We'll add a meta
HTML tag to tell the browser that the page should be refreshed at regular intervals.
We'll add a generic placeholder for meta tags in our base template and then override
it with the refresh tag in our dashboard.html template.

In the dashboard.html file, add a Jinja block that contains the meta HTML tag above
the content block:

{% extends "base.html" %}
{% block metarefresh %} <meta http-equiv="refresh" content="10" > {%
endblock %}

{% block content %}

Meta HTML tags indicate messages that don't directly relate to the content that
we are serving. They can also be used to add information about the author of a
page or to give a list of keywords that search engines may use while indexing the
page. In our case, we're specifying a meta tag that asks the browser to refresh every
ten seconds.

In the base.html file, create an equivalent empty placeholder:

 {% block metarefresh %} {% endblock %}

 <title>Waiter Caller</title>

Now open the app in your browser again and navigate to the dashboard page. Every
10 seconds, you should see the page refresh and the wait times update. If you create
new attention requests, you'll see these appear after the automatic refresh as well.

Adding user feedback with WTForms
We now have a web application that is largely functional, but still fails to provide
the user with helpful feedback, especially when it comes to submitting web forms.
Let's look at how to make our application more intuitive by providing feedback
when the user succeeds or fails to complete various actions.

Chapter 10

[193]

To make our life easier, we'll use another Flask add-on, WTForms, which lets us
validate inputs by using prespecified patterns or by creating our own. We'll use
WTForms to implement all our web forms, namely:

• The registration form
• The sign-in form
• The create table form

Introducing WTForms
You might have noticed that creating the registration form for new users to sign up
for our web app was a bit cumbersome. We had to create the HTML form in our
template file and then fetch all the input data when the form was submitted in our
Python backend code. In order to do this, we had to use the same strings, such as
email and password, in our HTML code (for the name attribute) and in our Python
code (to load the data from the various fields into variables). These strings, email
and password, are examples of what are sometimes called magic strings. It might
seem obvious to us, while creating the application, that the strings have to be the
same in both the files, but to another developer who might need to maintain the
application in the future, or even to our future selves, this implicit link might
be a lot less obvious and more confusing.

Furthermore, we had to use a fairly ugly if statement in our application code to
make sure that the passwords matched. It turns out that we want to do much more
validation on user input than just checking that the passwords match. We probably
want to also validate that the e-mail address looks like an e-mail address, that
the password isn't too short, and possibly more besides. As our user-input forms
get longer, and the validation rules get more complicated, we can see that our
application code would quickly get pretty messy if we carried on developing forms
as we have been doing so far.

Finally, as mentioned earlier, our forms failed to provide the user with helpful
feedback when things went wrong.

WTForms solves all of these problems in a simple and intuitive way. We'll soon
explain how to create Python classes to represent forms. These classes will contain
validation rules, field types, field names, and feedback messages, all in the same
place. Our Jinja templates and our application code can then use the same object to
render the form (when the user views the page) and to process the input (when the
user submits the form). Using WTForms therefore allows us to keep our code cleaner
and to speed up development. We'll take a quick look at installing WTForms for
Flask, before diving into how we can use it for improving our application.

Template Inheritance and WTForms in Waiter Caller Project

[194]

Note that WTForms is a general Python web development add-on that works with
many different Python web development frameworks (such as Flask, Django, and
others) and template managers (such as Jinja2, Mako, and others). We'll install a
Flask-specific extension that will install WTForms and make it easy to interface with
our Flask application.

Installing Flask-WTF
We need to install the WTForms add-on for Flask. This is done in the same way
as our previous extensions. Simply run the following command (as always,
remembering to do it both locally and on your VPS):

pip install --user Flask-WTF

Creating the registration form
Now let's take a look at building forms. We'll be building a few forms, so we'll create
a new Python file in our project to hold all of these. In your waitercaller directory,
create a file called forms.py and add the following code:

from flask_wtf import Form
from wtforms import PasswordField
from wtforms import SubmitField
from wtforms.fields.html5 import EmailField
from wtforms import validators

class RegistrationForm(Form):
 email = EmailField('email',
 validators=[validators.DataRequired(), validators.Email()])
 password = PasswordField('password',
 validators=[validators.DataRequired(),
 validators.Length(min=8, message="Please choose a password
 of at least 8 characters")])
 password2 = PasswordField('password2',
 validators=[validators.DataRequired(),
 validators.EqualTo('password', message='Passwords must
 match')])
 submit = SubmitField('submit', [validators.DataRequired()])

The class, RegistrationForm, inherits from Form, a generic form object that we
find inside the flask_wtf extension. Everything else is from the wtforms module
directly (and not from the Flask-specific extension). The form is built from a number
of different fields—in our case, an EmailField, two PasswordFields, and a Submit
field. All of these will be rendered as their HTML equivalents in our template.
We assign each of these desired fields to variables.

Chapter 10

[195]

We'll use these variables to render the fields and to retrieve data from the fields.
Each time we create a field, we pass in some arguments. The first is a string
argument to name the form. The second argument is a list of Validators. Validators
are sets of rules that we can use to differentiate between valid input and invalid
input. WTForms provides all the validators that we need, but it's also easy to write
custom validators. We use the following validators:

• DataRequired: This simply means that if the field is left blank, the form is
invalid for all fields.

• Email: This uses a regular expression to ensure that the e-mail address is
made up of alphanumeric characters, and has an @ symbol and a full-stop
in their appropriate places. (Fun fact: this is a surprisingly complicated
problem! See http://www.regular-expressions.info/email.html.)

• EqualTo: This ensures that the data entered in the field is the same as the
data entered into another field.

• Length: This validator takes optional min and max arguments to define the
number of characters the data should contain. We set this to a minimum of 8
to ensure that our users don't pick very weak passwords.

Recall our discussion of the trade-offs between backend and frontend validation and
note that these are all backend validation methods, completed server-side. Therefore,
it is still worthwhile to add the Email validator even if the user's browser supports
HTML5; the fact that it is an email field will prevent the user from submitting an
invalid e-mail address (using a frontend validation check).

Another thing about validators is that we can add a message argument for each
validator—not just for each field—and each field can have more than one validator.
We'll see later how to display this message to the user if that specific validation
check fails.

It's important to note that the variable names you choose for each form field (email,
password, and password2 in the registration form that we created previously) are
more important than most variable names because the name and id attributes for the
final HTML field will be taken from the variable names.

Rendering the registration form
The next step is to use our form object for rendering an empty registration form when
a user loads our home page. To do this, we have to modify both our application
code (to create an instance of the registration form class and pass it to the template)
and our frontend code (to render our fields from the variables of the class, instead of
hardcoding them in HTML).

http://www.regular-expressions.info/email.html.

Template Inheritance and WTForms in Waiter Caller Project

[196]

Updating the application code
In our waitercaller.py file, we need to import the form we created, instantiate it,
and pass it to our template.

Add an import for our registration form:

from forms import RegistrationForm

Now instantiate the form in our home() function and pass the form on to the
template. The final home() function should read as follows:

@app.route("/")
def home():
 registrationform = RegistrationForm()
 return render_template("home.html",
 registrationform=registrationform)

Updating the template code
Now that our template has access to an instantiated RegistrationForm object,
we can use Jinja to render the fields of our form. Update the registration form in
home.html to read as follows:

<h2>Register now</h2>
<form class="form-horizontal" action="/register" method="POST">
 {{ registrationform.csrf_token }}
 <div class="form-group">
 <div class="col-sm-9">
 {{ registrationform.email(class="form-control",
 placeholder="Email Address")}}
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-9">
 {{ registrationform.password(class="form-control",
 placeholder="Password")}}
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-9">
 {{ registrationform.password2(class="form-control",
 placeholder="Confirm Password")}}
 </div>
 </div>
 <div class="form-group">

Chapter 10

[197]

 <div class="col-sm-9">
 {{ registrationform.submit(class="btn btn-primary
 btn-block")}}
 </div>
 </div>
</form>

The Bootstrap boilerplate (the div tags specifying Bootstrap classes) remains
unchanged, but now, instead of creating input fields in HTML, we call functions
belonging to our registrationform variable that was passed in from the home()
route. Each variable that we declared in our RegistrationForm class (email,
password, password2, and submit) is available as a function to which we can pass
additional HTML attributes as arguments. The name and id attributes will be set
automatically based on the variable names we provided when we wrote the form,
and we can add further attributes, such as class and placeholder by passing them
in here. As before, we use 'form-control' as the class of our inputs, and also specify
the 'placeholder' values to prompt the user to input information.

We also render the csrf_token field at the beginning of the new code. This is a
very useful security default that WTForms provides. One of the more common web
application vulnerabilities is called Cross Site Request Forgery (CSRF). Although
a detailed description of this vulnerability falls outside the scope of this book, in
short, it exploits the fact that cookies are implemented at the browser level rather
than at a web page level. Because cookies are used for authentication, if you log
into your one site that is vulnerable to CSRF, and then in a new tab, navigate to a
malicious site that can exploit a CSRF vulnerability, the malicious site can carry out
actions on the vulnerable site on your behalf. This is achieved by sending across the
legitimate cookie (that you created when you logged into the vulnerable site), along
with an action that requires authentication. In the worst case scenario, the vulnerable
site is your online banking, and the malicious site carries out financial transactions
on your behalf, without your knowledge, using the CSRF vulnerability. The CSRF
token mitigates against this vulnerability by adding a hidden field to every form
with a cryptographically secure set of randomly generated characters. Because the
malicious site cannot access this hidden field (even though it can access our cookies),
we know that a POST request that includes these characters originates from our site,
and not a malicious third-party one. If you find this level of web application security
interesting, read more about the CSRF vulnerability on the Open Web Application
Security Project (OWASP) website (https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF)). Either way, you should always include the CSRF
field in all forms—in fact, the validation step will fail if you omit it.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Template Inheritance and WTForms in Waiter Caller Project

[198]

Testing the new form
Because we used the same Id and name attributes for our form as we did before, our
application code for handling the processing of data when the form is submitted will
still work. Therefore, fire up the application and make sure that everything is still
working at this point. If all has gone well, the home page of the application will look
identical to when we last tested our application. You should also be able to use your
browser's 'view source' function to check that the various form fields were converted
into various HTML input types as expected.

Using WTForms in our application code
The next step is to update our application code to use WTForms for catching data
that has been input through the form. Now, instead of having to remember which
"name" attributes we used, we can simply instantiate a new RegistrationForm
object and populate it from the post data received backend. We can also easily
run all our validation rules and get a list of errors for each field.

In waitercaller.py, modify the register() function to read as follows:

@app.route("/register", methods=["POST"])
def register():
 form = RegistrationForm(request.form)
 if form.validate():
 if DB.get_user(form.email.data):
 form.email.errors.append("Email address already registered")
 return render_template('home.html', registrationform=form)
 salt = PH.get_salt()
 hashed = PH.get_hash(form.password2.data + salt)
 DB.add_user(form.email.data, salt, hashed)
 return redirect(url_for("home"))
 return render_template("home.html", registrationform=form)

In the preceding code, the first change is the first line of the function. We instantiate
a new RegistrationForm and populate it by passing in the request.form object,
from which we previously pulled each field individually. As mentioned before, it's
great that we don't have to hardcode the field names now! We can instead access the
user's input data through the forms properties, such as form.email.data.

The second line is also a big change. We can call form.validate() to run all
our validation rules, and this will return True only if all the rules pass, else it will
populate the form object with all the relevant failure messages. The last line of the
function, therefore, will only get called if there are validation errors. In this case,
we now re-render our home page template, passing across a fresh copy of the form
(which now has a reference to the errors. We'll see how to display these in the
next step).

Chapter 10

[199]

If the e-mail address is found in our database, we now append an error message to
the error messages for the e-mail field and re-render the template to pass this error
back to the frontend.

Note that previously, our three return options were all simply redirected to the home
page, made using the Flask redirect() function. Now we have replaced them all
with render_template() calls, as we need to pass the new form (with the error
messages added) along to the frontend.

Displaying errors to our user
The final step for our new registration form is to display any errors to the user so
that the user can fix them and resubmit the form. To do this, we'll add some Jinja if
statements to our template to check if any errors exist in the form object and display
them if they do. Then we'll add some CSS to make these errors appear in red. Finally,
we'll look at how we could do all of this more concisely (which we'd definitely want
if we had more and larger forms).

Displaying the errors in our template
All we need to do to display the errors is add an if statement above each of our
input fields, checking if there are any errors to display for that field (remember
WTForms automatically populates the error lists for our form object when we run
the validate() method). If we find errors to display for that field, we need to loop
through all of them and display each one. Although, in our case, each field can only
have a single error, remember that we can add more than one validator to each field,
so it's definitely possible to have forms which have several errors for each field. We
don't want the user to have to fix one error and resubmit, only to find out that there
are still others—instead, the user would want to be informed of all errors after a
single submission of the form.

Modify the registration form in home.html to read as follows:

<div class="form-group">
 <div class="col-sm-9">
 {% if registrationform.email.errors %}
 <ul class="errors">{% for error in
 registrationform.email.errors %}{{ error }}
 {% endfor %}
 {% endif %}

 {{ registrationform.email(class="form-control",
 placeholder="Email Address")}}
 </div>
</div>
<div class="form-group">

Template Inheritance and WTForms in Waiter Caller Project

[200]

 <div class="col-sm-9">
 {% if registrationform.password.errors %}
 <ul class="errors">{% for error in
 registrationform.password.errors %}
 {{ error }}{% endfor %}
 {% endif %}

 {{ registrationform.password(class="form-control",
 placeholder="Password")}}
 </div>
</div>
<div class="form-group">
 <div class="col-sm-9">
 {% if registrationform.password2.errors %}
 <ul class="errors">{% for error in
 registrationform.password2.errors %}
 {{ error }}{% endfor %}
 {% endif %}

 {{ registrationform.password2(class="form-control",
 placeholder="Confirm Password")}}
 </div>
</div>

Note that we display our errors by building a list (within the tags), and that we
assign these lists the class attribute of errors. We don't have any CSS code yet to
define what error lists should look like, so let's fix that quickly.

Adding CSS for the errors
The CSS code for the errors is the only custom CSS code we'll be using in the project
(the rest of our CSS is all free with Bootstrap). Therefore, it's fine to add our CSS
directly into the base.html template file (we'll use it in our other templates as well),
instead of creating a new external CSS file or editing the Bootstrap files.

If you're curious, take a look at the bootstrap.min.css file inside the static/
css directory and note that it's quite difficult to read and modify (it's all in a single
line!). The reason for this is to make the page load faster—every space and newline
character makes the file a little bit bigger, which means our users' browsers would
take longer to download the CSS file that is needed to display the web page. This
is why large CSS and JavaScript libraries (such as the Bootstrap ones) come with
a minified version (this is what the 'min' in bootstrap.min.css stands for). If we
wanted to add our new CSS code to the Bootstrap file, we'd probably add it to the
non-minified version and then re-minify it to create the minified one that we'd use
in production.

Chapter 10

[201]

Add the following style between the <head> tags of the base.html file:

<style type="text/css">
 ul.errors {
 list-style-type: none;
 padding: 0;
 color: red;
 }
</style>

The first line in the preceding styling code means that it should only apply to
elements which have a class of errors (that is, the feedback messages we just added
to our home page). The next three lines remove the bullet point that lists use by
default, remove the indent that lists use by default, and set the font color to red.

Testing the final registration form
Our registration form is now finished. It now uses WTForms, so it is cleaner and
easier to maintain, and we don't have to rely on a developer knowing that the HTML
name attribute has to match up with the Python code. Let's have a look to make sure
everything still works and that our new error messages are displayed when we
expect them to be and are not shown when we don't want them.

Run your application again and try to register a new account. Try out various
combinations of errors, such as using an already registered e-mail address
(remember that our test database is cleared every time we restart the application),
using a password that is too short, using non-matching strings for the two password
fields, or using an invalid e-mail address. If all has gone according to plan, your form
with errors should look similar to the one below:

Template Inheritance and WTForms in Waiter Caller Project

[202]

There are a couple of interesting things to note about the last image. First, note
that the e-mail address g@1 is taken to be valid by the HTML5 input box (frontend
validation), but not by the Email() validator (backend validation). This is why I
could submit the form even though I'm using a browser that supports the HTML5
e-mail field, and was only told that the e-mail address was invalid after the data
went to the backend. Second, note that after the form was submitted, the e-mail
address was repopulated automatically, while the password fields are now blank.
This is a useful default of most browsers. We are likely to want to submit similar
information the second time round, after fixing the errors, but for security reasons,
we always want to get rid of passwords as quickly as possible.

Note the 'Invalid email address.' message in the preceding image. In our forms.py
file, we only specified the error message for the case when the password was
too short, but WTForms provides default messages for its built-in validators.
Similarly, if you leave the password field blank, you'll see the message
'This field is required'—another useful default that we did not have to write.

That's most of the heavy lifting done for form validation and user feedback.
Now that you have a good conceptual grasp of how everything works, we'll go
over it quickly once:

• Displaying feedback when the user's registration is successful (at the
moment, we rather pessimistically only seem to be confirmed with failure,
but the user will want to know that an account has been successfully
registered if everything goes well).

• Moving our login form to WTForms and adding feedback for when users
fail to log in.

• Moving our 'new table' form to WTForms and adding feedback
where necessary.

Adding a successful registration notification
Normally, we would show the user a new page after a successful registration,
thanking them for registering and informing them that everything has been
successful (see the next chapter for a more complete list of things we could improve
on if we were writing this application for a production environment instead of using
it as an educational project). To keep our application to as few pages as possible, and
to prevent this book from growing too long, we'll show the user a JavaScript popup
box instead. Generally, when creating user interfaces, we want to avoid as many
popups as possible, as users find them irritating. However, they are occasionally
necessary, so using one here will help keep our application simple and give us an
opportunity to learn a bit more JavaScript.

Chapter 10

[203]

JavaScript is event-based. This means that we can write code that is triggered by
user actions (such as a mouse click) or other events such as an 'onload' event, which
is triggered when a specific resource loads in the user's browser. Previously, in our
Crime Map project, we used this to initialize the JavaScript Google Map widget after
the <body> tag had loaded. Now we'll do something similar, but use this to display a
JavaScript alert box instead. We'll also make our message dynamic and pass it to the
frontend from the backend code.

Passing the message from the application code
The backend change for this is easy. Simply change the register() function to
pass in the appropriate message if we process all the input data without any errors.
In waitercaller.py, update the register() function to read as follows:

hashed = PH.get_hash(form.password2.data + salt)
DB.add_user(form.email.data, salt, hashed)
return render_template("home.html", registrationform=form,
onloadmessage="Registration successful. Please log in.")

return render_template("home.html", registrationform=form)

Using the message in the template code
The change is slightly trickier to implement in our template because we don't
actually have access to the <body> tag (where we want to specify the JavaScript
alert) in our home.html template. Instead, our <body> is defined in our base.html
skeleton template from which all our other templates inherit.

To modify the <body> tag only in our home.html template, we need to make
the <body> tag appear within an inheritable Jinja block, similar to our content
block. To do this, we need to make changes to our base.html template and to
our home.html template.

In base.html, make the following change where the <body> tag is created:

 </head>
 {% block bodytag %}

 <body>
 {% endblock %}

Template Inheritance and WTForms in Waiter Caller Project

[204]

Now the <body> tag can be overwritten by child templates, as it appears inside a
configurable block. In home.html, we'll overwrite the <body> block directly after
the first line, if an alert message is specified. Remember that if this message is not
specified, the home.html template will simply inherit the default <body> tag from
the base.html template. In home.html, add the following code directly after the
first line:

{% block bodytag %}
 <body {% if onloadmessage %} onload="alert('{{onloadmessage}}');" {%
endif %}>
{% endblock %}

The only slightly tricky part is matching up all the quotation marks and brackets
in the onload attribute. The entire alert function (the JavaScript we want to run)
should appear within double quotation marks. The string inside the alert function
(the message that is actually displayed to the user) should be inside single quotation
marks. Finally, the onloadmessage variable should be inside double braces, so that
we get the contents of the variable rather than the string of the variable name.

Now, after a successful registration, the user will see an alert confirming that
everything went well and that a login is possible, as seen in the following image.
It would be better to add a new page to properly inform the user of the successful
registration, but to keep our app simple (and so we could introduce the onload
functionality, which is generally useful), we opted for a slightly messier way of
communicating this.

Chapter 10

[205]

Modifying the login form
The changes necessary to move the login form to WTForms are very similar to the
changes we made for the registration form, so we'll provide the code with minimal
discussion. Refer to the code bundle if you are unsure where to insert the code or
make changes.

Creating the new LoginForm in the application code
In forms.py, add the LoginForm class:

class LoginForm(Form):
 loginemail = EmailField('email',
 validators=[validators.DataRequired(), validators.Email()])
 loginpassword = PasswordField('password',
 validators=[validators.
 DataRequired(message="Password field is required")])
 submit = SubmitField('submit', [validators.DataRequired()])

Here we specify a custom message for the password field's DataRequired validator,
as the error messages won't align with the fields as nicely as they did for the
registration form. We also use the variable names loginemail and loginpassword,
as these will become the HTML element id and name attributes, and it's preferable
that they don't get overridden by the login and password fields in the registration
form on the same page.

In waitercaller.py, add the import for the login form:

from forms import LoginForm

And rewrite the login() function as follows:

@app.route("/login", methods=["POST"])
def login():
 form = LoginForm(request.form)
 if form.validate():
 stored_user = DB.get_user(form.loginemail.data)
 if stored_user and
 PH.validate_password(form.loginpassword.data,
 stored_user['salt'], stored_user['hashed']):
 user = User(form.loginemail.data)
 login_user(user, remember=True)
 return redirect(url_for('account'))
 form.loginemail.errors.append("Email or password invalid")
 return render_template("home.html", loginform=form,
 registrationform=RegistrationForm())

Template Inheritance and WTForms in Waiter Caller Project

[206]

It may seem that the "Email or password invalid" error is quite vague and could be
more specific. It's true that the user may find it helpful to know where the mistake
lies, as many people use many different e-mail addresses and different passwords.
Thus, it would be convenient to know whether you, as a user, have entered the wrong
e-mail and need to try to remember which e-mail address you signed up for, or if you
have the correct e-mail address and have misremembered your anniversary or date
of birth or whatever mnemonic you use to remember your password. However, the
convenience is offset by yet another security issue. If we display "Invalid password"
when the user enters a correct e-mail address but the incorrect password, this would
allow a malicious attacker to try a large list of e-mail addresses against our website,
and slowly build up a list of e-mail addresses that belong to our users. The attacker
could then target these users in a phishing attack by using the knowledge that these
users are our customers. This is yet another case that shows how developers have to
be constantly vigilant against what information they might be allowing an attacker to
infer, even if it's not directly provided.

The last backend changes that we need to make are to initialize and pass in a new
LoginForm object whenever we render the home.html template. These changes have
to be made:

• Once in the home() function
• Three times in the register() function

Change the home() function to read as follows:

@app.route("/")
def home():
 return render_template("home.html",
 loginform=LoginForm(), registrationform=RegistrationForm())

Change the last two lines of the register() function to:

 return render_template("home.html", loginform=LoginForm(),
 registrationform=form, onloadmessage="Registration successful.
 Please log in.")
 return render_template("home.html", loginform=LoginForm(),
 registrationform=form)

And the return statement in the middle of the register() function to:

 return render_template("home.html", loginform=LoginForm(),
 registrationform=form)

Chapter 10

[207]

Using the new LoginForm in the template
For the template changes, home.html should now use the following login form:

<form class="navbar-form navbar-right" action="/login"
method="POST">

 {% if loginform.errors %}

 <ul class="errors">

 {% for field_name, field_errors in loginform.errors|dictsort
 if field_errors %}

 {% for error in field_errors %}

 {{ error }}

 {% endfor %}

 {% endfor %}

 {% endif %}

 {{ loginform.csrf_token}}

 <div class="form-group">

 {{ loginform.email(class="form-control", placeholder="Email
 Address")}}

 </div>

 <div class="form-group">

 {{ loginform.password(class="form-control",
 placeholder="Password")}}

 </div>

 <div class="form-group">

 {{ loginform.submit(value="Sign in",
 class="btn btn-success")}}

 </div>

</form>

Instead of displaying the errors above each field, as we did for the registration form,
we'll just display all the errors above the login form. To do this, we can use the
loginform.errors property, which is a dictionary mapping of each field to a list of
its errors. The error displaying code is therefore slightly more verbose, as it has to
loop through all the keys and values of this dictionary, and we use the convenient
|dictsort Jinja notation to sort the dictionary before displaying the errors.

Template Inheritance and WTForms in Waiter Caller Project

[208]

Modifying the create table form
The last form change we need to make is to the create table form, for when
an already logged-in user adds a new restaurant table to his or her account.
The new form to be added to forms.py looks like this:

class CreateTableForm(Form):
 tablenumber = TextField('tablenumber',
 validators=[validators.DataRequired()])
 submit = SubmitField('createtablesubmit',
 validators=[validators.DataRequired()])

This requires a new import in forms.py as well:

from wtforms import TextField

In waitercaller.py, we need to import the new form with:

from forms import CreateTableForm

Update the account_createtable() function to:

@app.route("/account/createtable", methods=["POST"])
@login_required
def account_createtable():
 form = CreateTableForm(request.form)
 if form.validate():
 tableid = DB.add_table(form.tablenumber.data,
 current_user.get_id())
 new_url = BH.shorten_url(config.base_url + "newrequest/" +
 tableid)
 DB.update_table(tableid, new_url)
 return redirect(url_for('account'))

 return render_template("account.html", createtableform=form,
 tables=DB.get_tables(current_user.get_id()))

And the account() route to:

@app.route("/account")
@login_required
def account():
 tables = DB.get_tables(current_user.get_id())
 return render_template("account.html",
 createtableform=CreateTableForm(), tables=tables)

Chapter 10

[209]

Finally, the form in the account.html template should be changed to:

<form class="form-inline" action="/account/createtable"
method="POST">
 <div class="form-group">
 {% if createtableform.tablenumber.errors %}
 <ul class="errors">
 {% for error in createtableform.tablenumber.errors %}
 {{error}}
 {% endfor %}

 {% endif %}
 {{ createtableform.csrf_token}}
 {{ createtableform.tablenumber(class="form-control",
 placeholder="Table number or name")}}
 {{ createtableform.submit(value="Create",
 class="btn btn-primary") }}
 </div>
</form>

At the moment, if the user leaves the field blank and hits the Create button, we can
only ever have a single error displayed on the create table form, that is, 'This field
is required', which we can see in the following screenshot:

With this in mind, it is debatable whether the for loop should loop through all the
error messages. On the one hand, it is bad to 'future proof' too much, as you are left
with a code base that contains a lot of unnecessary code that is over complicated.
On the other hand, we may well add more error messages to the WTForm (such as
if the user tries to create a table with a number that already exists), and therefore,
it is arguably worthwhile to add the for loop.

Template Inheritance and WTForms in Waiter Caller Project

[210]

The one form left that we have not converted to WTForms is the delete table form.
As this is only a single Submit button, it is left as an exercise (the CSRF protection
would still be a worthwhile gain in moving this form to WTForms.).

Summary
We've fleshed out our application's functionality, and it's now a lot more powerful.
We added Dashboard and Account pages, and wrote all the application code,
database code, and frontend code to handle our requirements.

We looked at Jinja templates as a way to avoid duplicating the frontend code,
and we also looked at how to use the bitly API to shorten links.

We then added WTForms, and saw how this could make our user feedback easier,
our forms easier to validate, and our web application more secure. Our users are
now kept up-to-date with information about their registration, login, and usage of
the application.

In the next chapter, we'll add a real database to our code and then work on some
finishing touches.

[211]

Using MongoDB with Our
Waiter Caller Project

Our web application now has nearly all of its functionality. If we plan to monetize
this application, now would be the time where we'd demo it to potential customers.
Even though their data (such as their account name and virtual table data) would be
lost every time we had to restart our server, this data is trivial enough to make a full
demo of the application feasible.

In this chapter, we will add a proper database for use in production. We'll use
MongoDB—a slightly controversial NoSQL database management system that
has become extremely popular, arguably largely because of its simplicity. We'll
take a look at how to install in on our VPS, configure it correctly, and access it
using a Python driver. Then, we'll implement the full DBHelper class to replace
MockDBHelper, which we use for testing. To end off, we'll look at adding indices
to MongoDB and a favicon to our application.

In this chapter, we'll cover the following topics:

• Introducing MongoDB
• Installing MongoDB
• Using the MongoDB shell
• Introducing PyMongo
• Adding some finishing touches

Using MongoDB with Our Waiter Caller Project

[212]

Introducing MongoDB
MongoDB is a NoSQL database. This means that unlike the MySQL database we
used for our Crime Map project, it is not organized into tables, rows, and columns;
instead, it is organized into collections, documents, and fields. While it can be useful
to think of these new terms as a sort of translation from those we use for relational
databases, the concepts do not perfectly translate. If you have a background in
relational databases, a useful and more complete reference to these translations can
be found on the official MongoDB website at https://docs.mongodb.org/manual/
reference/sql-comparison/.

MongoDB's structure is much more flexible than that of a SQL database—not all of
our data has to confirm to a specific schema, and this can save development time.
For our Crime Map project, we had to spend time up front looking at our data and
deciding how to represent it in a database. We then had to set up a bunch of fields,
specifying the data type, length, and other constraints. MongoDB, by contrast,
requires none of this. It's more flexible than an RDBMS, and it uses documents to
represent the data. Documents are essentially bits of JSON data similar to the data
we pulled from the APIs we used. This means that we can easily add or remove
fields as necessary, and we do not need to specify data types for our fields.

The downside of this is that by not being forced to be structured and consistent, it's
easy for us to get lazy and fall into bad practices of mixing different data types in a
single field and allowing invalid data to pollute our database. In short, MongoDB
gives us more freedom, but in doing so, it shifts some of the responsibility for being
clean and consistent onto our shoulders.

Installing MongoDB
MongoDB can be found in the Ubuntu software repositories, but as updates are
frequent and the repository versions tend to lag behind, it's highly recommended to
install it from the official Mongo package directly.

We'll go through how to do this step by step here, but as the installation procedures
may change, it's advisable to get an updated version of the required URLs and
steps from the official installation guide available at https://docs.mongodb.org/
manual/tutorial/install-mongodb-on-ubuntu/.

The first thing we need to do is import MongoDB's public key so that the installation
can be authenticated. On your VPS only (as before, we will not install a database
server on our development machine), run the following:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv EA312927

https://docs.mongodb.org/manual/reference/sql-comparison/
https://docs.mongodb.org/manual/reference/sql-comparison/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

Chapter 11

[213]

Now that we have the key, we can use the following command to add a link to the
MongoDB package to our software sources. Note that this command is specific to
Ubuntu 14.04 "Trusty", which, at the time of writing, is the latest long-term support
Ubuntu version. If your VPS runs a different version of Ubuntu, make sure you get
the correct command from the MongoDB documentation link provided earlier. To
discover which version of Ubuntu you have, run lsb_release -a in your terminal
and examine the output for a version number and name:

echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list

Now, we simply need to update our source lists by running:

sudo apt-get update

Finally, do the actual installation by running the following command:

sudo apt-get install -y mongodb-org

The preceding command will install MongoDB with some sensible defaults and
start the server. It'll also configure it in such a way that the server will start up
automatically if you reboot your VPS.

Using the MongoDB shell
Similarly to what we discussed with MySQL, MongoDB comes with a simple shell.
This is ideal to run quick, one-off commands and get used to the syntax. Let's run
through the basic CRUD operations to get familiar with how MongoDB works.

As in our previous project, once we introduce MongoDB, we'll move to using it
only through Python code; however, to start out, we'll write commands directly in
the shell. This means there will be some slight differences in syntax, but as nearly
everything is JSON based, these differences shouldn't be a problem.

Starting the MongoDB shell
To start the MongoDB shell, run the following command on your VPS:

mongo

Using MongoDB with Our Waiter Caller Project

[214]

This will start the interactive MongoDB shell as in the following image, which
you can exit at any time by pressing Ctrl + C or by typing exit into the shell and
pressing Enter.

Running commands in the MongoDB shell
As with MySQL, the top-level concept in MongoDB is a database. By default, this
will connect to a database named test. We can change databases using the use
command. Run the following command in the shell:

use sandbox

You should see the output "Switched to db sandbox". This is where we can note the
first big difference between MySQL and MongoDB. With MySQL, we would first
have had to create the database. This is a common pattern we'll see with MongoDB;
if you reference a database, collection, or field that doesn't exist, it'll be automatically
created for you.

Creating data with MongoDB
Now, let's create a collection (similar to a table in our MySQL database from the
Crime Map project) and add a document (as with a row from a table in our MySQL
database) to it. Run the following in the MongoDB shell:

db.people.insert({"name":"John Smith", "age": 35})

In the preceding command, db refers to the current database. Directly after, people
refers to the collection called of this name. As it doesn't exist, it'll get created as we
attempt to use it. Following this is insert, which means we want to add something
to the database. We will pass as an argument (inside round the brackets), which is a
JSON structure. In our case, we represented a person with a JSON object containing
the person's name and age. Note that everything is in quotation marks except for the
value of the age field; again, unlike MySQL, we don't have to specify the types for
this data. MongoDB will store the name as a string and the age as an integer, but it
applies no restrictions to these fields.

Chapter 11

[215]

Add another person to the database to make the next operations that we will try out
more meaningful. Run the following:

db.people.insert({"name":"Mary Jones"})

Reading data with MongoDB
Instead of the SQL concept of a SELECT statement, MongoDB uses a find()
command. Similarly to SQL, we can specify the criteria to search for in data and also
choose which fields we want the database to return. Run the following command:

db.people.find()

This is the most basic version of the find operation. It'll simply find or retrieve all the
data and all its fields from the people collection. You should see MongoDB output
all the information about both the people we just added. You'll note that each person
also has an ObjectId field added; MongoDB adds unique identifier fields to each of
our documents automatically, and these ID fields are also automatically indexed.

We can also use find with a single argument. The argument specifies criteria, and
MongoDB only returns documents that match. Run the following command:

db.people.find({"name":"John Smith"})

This will return all the fields from all the records if the name matches John Smith, so
you should see a single result returned and printed to the shell, as in the screenshot
that follows:

Finally, if we don't want all the fields returned, we can run the find command
and pass in a second argument to specify which fields we want. Run the following
command, and you should see results as in the following screenshot:

db.people.find({"name":"John Smith"}, {"age":1})

Using MongoDB with Our Waiter Caller Project

[216]

The first argument says we're only interested in people who are called "John Smith".
The second argument says we're only interested in their age. Here, 1 is a flag that
says we want this field. We could instead use 0 to say that we're not interested in a
field, in which case, all the fields will be returned except this one.

Note that even though we said we were only interested in the age field, the preceding
command returned the _id field as well. The _id field is always returned unless
explicitly excluded. For example, we could run the following:

db.people.find({"name":"John Smith"}, {"age":1, "_id": 0})

This will return only John's age and nothing else. Also, note that the key for the _id
field is _id and not id; this is to prevent a conflict with the id keyword in many
programming languages, including Python.

Each of our examples used very basic JSON objects with only a single value, but we
can specify multiple values for each argument. Consider the difference between the
following commands:

db.people.find({"name":"John Smith", "age":1})

db.people.find({"name":"John Smith"}, {"age":1})

The first command uses find with a single argument that returns all records for all
the people with the name John Smith and aged 1. The second command uses find
with two arguments and returns the age field (and _id field) of all the people with
the name John Smith.

A final difference to note from MySQL is that there is no need to commit new
data. Once we run the insert statement, the data will be in the database until
we remove it.

Updating data with MongoDB
Updating existing records is slightly more complicated. MongoDB provides an
update method, which can be called in the same way as insert and find. It also
takes two arguments—the first specifying the criteria to find the document we want
to update, and the second providing a new document to replace it with. Run the
following command:

db.people.update({"name":"John Smith"},
{"name":"John Smith", "age":43})

Chapter 11

[217]

This finds the person with the name John Smith, and replaces him with a new
person, also with the name John Smith and aged 43. If there are a lot of fields and
we only want to change a single one, it is tedious and wasteful to recreate all the
old fields. Therefore, we can use MongoDB's $set keyword instead, which will
only replace the specified fields inside a document instead of replacing the whole
document. Run the following command:

db.people.update({"name":"John Smith"}, {$set: {"age":35}})

This updates John's age back to 35 again, which is probably a relief to him. Instead
of having to overwrite the whole document, here we only changed the age field.
We did this using the $set keyword in the second argument. Note that the update
function still takes two arguments and the second one now has a nested JSON
structure—the out JSON object has $set as the key and another JSON object as a
value. The inner JSON object specifies the updates that we want to make.

Deleting data with MongoDB
Deleting data is as easy as finding it. We will simply use the remove function instead
of find and then specify the matching criteria in a single argument, just as we would
with find. Run the following command to delete John from our database:

db.people.remove({"name":"John Smith"})

You will see a confirmation that one record was deleted, as shown in the
following image:

You can also check that John is deleted by running the following:

db.people.find()

Now, only Mary will be returned, as in the following image:

To remove all the documents from a collection, we can pass in an empty argument.
Run the following command to remove all the remaining people:

db.people.remove({})

Using MongoDB with Our Waiter Caller Project

[218]

Here, {} specifies an empty criteria condition and therefore matches all the
documents. Check that our people collection is empty by running the find
command again, as follows:

db.people.find()

You'll see no output, as shown in the following screenshot (with the earlier examples
included for context), because our people collection is now empty:

Now that we looked at the basics of MongoDB, let's take a look at how to run similar
commands using Python instead of operating through the shell.

Introducing PyMongo
PyMongo is a library that implements drivers for MongoDB and will allow us to
execute commands on our database from our application code. As usual, install it
through pip using the following command (note that, similarly to MongoDB, you
only need to install this library on the server):

pip install --user pymongo

Now, we can import this library into our application and build our real DBHelper
class, implementing all the methods we used in our MockDBHelper class.

Writing the DBHelper class
The last class that we need is the DBHelper class, which will contain all the functions
that are required for our application code to talk to our database. This class will use
the pymongo library we just installed in order to run MongoDB commands. Create a
file named dbhelper.py in the waiter directory and add the following code:

import pymongo

DATABASE = "waitercaller"

Chapter 11

[219]

class DBHelper:

 def __init__(self):
 client = pymongo.MongoClient()
 self.db = client[DATABASE]

This code imports the pymongo library, and in the constructor, it creates a client—a
Python object that will let us run the CRUD operations we tried out earlier on our
database. We defined the name of our database as a global one, and in the second
line of our constructor, we connected to the specified database using client.

Adding the user methods
For user management, we need the same two functions we had in our mock class.
The first is to get a user out of the database (in order to log this user in) and the
second is to add new users to the database (in order to register new users). Add the
following two methods to the DBHelper class:

 def get_user(self, email):
 return self.db.users.find_one({"email": email})

 def add_user(self, email, salt, hashed):
 self.db.users.insert({"email": email, "salt": salt,
 "hashed": hashed})

For the first method, we used PyMongo's find_one() function. This is similar to
the find() method we used in the MongoDB shell but returns only a single match
instead of all the matching results. As we only allow one registration per e-mail
address, there will always be either one or zero matches. Using find() instead of
find_one() here would also work, but we would get back a Python generator that
produces a single or zero element. Using find_one(), we will get back either a
single user result or none, which is exactly what our login code needs.

For the add_user() method, we used insert() exactly as we discussed when
playing with the MongoDB shell and inserted a new document containing the
e-mail address, salt, and salted hash of the password.

Adding the table methods
We need methods to handle the following cases for the virtual tables that our users
will create:

• One to add new tables
• One to update tables (so that we can add the shortened bitly URL)

Using MongoDB with Our Waiter Caller Project

[220]

• One to get all the tables (so that we can display them in the Account page)
• One to get a single table (so that we can add the local table number to

our requests)
• One to delete a table

This is a nice set of methods as it demonstrates all four of the CRUD database
operations. Add the following code to the DBHelper class:

def add_table(self, number, owner):
 new_id = self.db.tables.insert({"number": number, "owner":
 owner})
 return new_id

def update_table(self, _id, url):
 self.db.tables.update({"_id": _id}, {"$set": {"url": url}})

def get_tables(self, owner_id):
 return list(self.db.tables.find({"owner": owner_id}))

def get_table(self, table_id):
 return self.db.tables.find_one({"_id": ObjectId(table_id)})

def delete_table(self, table_id):
 self.db.tables.remove({"_id": ObjectId(table_id)})

For the add_table() method, MongoDB will assign a unique identifier every time
we insert a table. This gives us true multiuser support. Our mock code used the
user-chosen table number as a unique identifier and would break with multiple users
when two or more users chose the same table number. In the add_table() method,
we returned this unique identifier to the application code, which can then be used to
build the URL that's needed to make new requests for this specific table.

The update_table() method uses the insert() function that we discussed earlier.
As in our previous example, we used the $set keyword to keep our original data
intact, and only edited a specific field (instead of overwriting the entire document).

Note that unlike in the MongoDB shell example, we now need
quotation marks around $set; this makes it syntactically legal Python
code (all the keys of a dictionary have to be strings), and PyMongo
takes care of the magic in the background to convert our Python
dictionaries into MongoDB commands and objects.

Chapter 11

[221]

The get_tables() function used the find() function instead of the find_one()
function that we used for the user code. This caused PyMongo to return a Python
generator that can produce all the data that matched the find criteria. As we assumed
that we'll always be able to load all the tables into memory, we converted this
generator to a list, which we then passed to our template.

The get_table() function is used in cases when we only have access to the table ID
and need to get other information about the table. This is exactly the scenario when
we processed requests; the URL of the request contained the table's unique ID but
wanted to add the table number to the Dashboard page. The unique identifiers that
MongoDB generated are actually objects rather than simple strings, but we had just
the string from our URL. Therefore, we created ObjectId and passed in the string
before using this ID to query the database. ObjectId can be imported from the bson
library, which was installed automatically. This means we also need to add another
import statement. Add the following line to the top of the dbhelper.py file:

from bson.objectid import ObjectId

Finally, the delete_table() method used the remove() function exactly as we did
before. Here, we removed a table by its unique identifier, so again, we created an
ObjectId object from the string we had before passing it to the database.

Adding the request methods
We have to add the last three methods to the DBHelper class to deal with the
attention requests. We need to:

• Add a request when a patron visits the provided URL
• Get all the requests for a specific user to display on the Dashboard page
• Delete requests from the database when the user hits the Resolve button

Add the following methods to the dbhelper.py file:

 def add_request(self, table_id, time):
 table = self.get_table(table_id)
 self.db.requests.insert({"owner": table['owner'],
 "table_number": table['number'],
 "table_id": table_id, "time": time})

 def get_requests(self, owner_id):
 return list(self.db.requests.find({"owner": owner_id}))

 def delete_request(self, request_id):
 self.db.requests.remove({"_id": ObjectId(request_id)})

Using MongoDB with Our Waiter Caller Project

[222]

Changing the application code
Now that we have a real DBHelper class, we need to conditionally import it based on
which environment we're in. Change the import for the MockDBHelper class in the
waitercaller.py file to read, as follows:

if config.test
 from mockdbhelper import MockDBHelper as DBHelper
else:
 from dbhelper import DBHelper

Ensure that the preceding four lines are added beneath the config import.

Also, our DBHelper class deals mainly with many instances of ObjectId, while
our MockDBHelper class uses strings. We therefore need a small change to our
account_createtable() function to cast ObjectId to a string. Take a look at
the line in waitercaller.py that reads the following:

new_url = BH.shorten_url(config.base_url +
"newrequest/" + tableid)

Now, change this to the following:

new_url = BH.shorten_url(config.base_url +
"newrequest/" + str(tableid))

This will ensure that tableid is always a string before we concatenate it to our URL.

The last code changes we need for our production is a different config file to specify
the correct base_url for our VPS and to indicate that the MockDBHelper class should
not be used. As we don't check our config file into our git repository, we'll need to
create this directly on the VPS.

Testing our application in production
Our application should now be fully functional once we add the preceding code! As
with the database section of our Crime Map application, this bit is the most delicate
as we haven't been able to test the DBHelper code locally, and we'll have to debug it
directly on the VPS. However, we're confident, from our MockDBHelper class, that all
our application logic is working, and if the new database code holds up, everything
else should go as expected. Let's push our code to the server and test it out.

Locally, run the following commands in your waitercaller directory:

git add .

git commit -m "DBHelper code"

git push origin master

Chapter 11

[223]

On your VPS, change to the WaiterCaller directory, pull the new code, and restart
Apache, as follows:

cd /var/www/waitercaller

git pull origin master

Now, create the production config file using nano by running the following
command:

nano config.py

Type the following into the new config.py file, substituting the IP address
in base_url with the IP address of your VPS.

test = False

base_url = "http://123.456.789.123/

Then, save and quit the file by hitting Ctrl + X and entering Y when prompted.

Now, run the following command to reload Apache with the new code:

sudo service apache2 reload

Visit the IP address of your VPS in your local browser and do a run-through of
all the functionality to make sure everything works as expected. This includes
attempting to sign up with invalid data, signing up, attempting to log in with invalid
data, logging in, creating a table, creating a request, viewing the dashboard, waiting
for the dashboard to refresh, resolving a request, and more. For a full test, all the
actions should be completed several times in varying combinations.

You'll probably understand how tedious this gets even for our relatively simple
application. For more complicated applications, it is well worth the effort to create
automatic tests—code that imitates what a user would do on the site but also has
built-in expectations of what should happen at each step. Tools such as Selenium
(www.seleniumhq.org) come in very useful to build such tests.

As always, if anything goes wrong or you get the dreaded "500: Internal
Server Error", check the Apache error file at /etc/log/apache2/
error.log for hints.

Adding some finishing touches
To end off, we'll add a couple of indices to our database to improve efficiency and
prevent multiple requests from being open for a single table. After this, we'll add a
favicon to personalize our web application.

www.seleniumhq.org

Using MongoDB with Our Waiter Caller Project

[224]

Adding indices to MongoDB
Database indices are used to increase efficiency. Normally, to find a subset of
documents in our database that match certain criteria (that is, whenever we use the
MongoDB find() method), the database engine has to examine each record and
add the ones that match the returned result. If we add an index to a specific field, the
database will store more metadata, which can be thought about as storing a sorted
copy of this field. To find out whether john@example.com appears in a sorted list is
much more efficient than checking whether it appears in an unsorted list. However,
the indices do take up additional storage space, so choosing where to add indices is
a classic space-time tradeoff that's seen everywhere in computer science. MongoDB can
also use indices to place some constraints on a field. In our case, we'll use a unique
index, which prevents a new document from being added to the database if the value
for the indexed field already appears in another document in this collection.

We'll add two indices to MongoDB. We'll add an index on the email field of our
users collection as we will use this field to find users on login, and we want the
lookups to be as fast as possible. We also want to ensure at a database level that each
e-mail address is unique. We already have two checks for this: the HTML5 field
does a frontend check, and our application code does a backend check. Even though
a database check may seem unnecessary, it takes little effort to set up and follows
the good principles of baked-in security (in which checks aren't just tacked on as an
afterthought, but all data is validated as often as possible instead), and the principle
that each layer of an application (the frontend, application layer, and database layer
in our case) shouldn't blindly trust the data that is passed from a higher layer.

We'll also add a unique index on the table_id field for a requests collection.
This will prevent a single impatient table from spamming the dashboard with
multiple requests by refreshing the page that creates a new request. It's also useful
because our requests are created using GET requests, which can easily be duplicated
(by a browser preloading a page or a social network scraping the links a user visits to
find out more about them). By ensuring that each request's table_id is unique, we
can prevent both of these issues.

Where do we add indices?
When we built our MySQL database, we had a setup script that ran independently of
our Crime Map web application. This setup script built the skeleton of the database,
and we wrote it in Python so that we could easily run it again if we ever needed to
migrate to a new server or to reinstall our database.

As MongoDB is so much more flexible, we didn't need a setup script. We can start
our application off on a new server, and—as long as we install MongoDB—the
database will recreate itself from scratch as new data is added or the old data is
restored from a backup.

Chapter 11

[225]

The lack of a setup script does mean that we don't really have a good place to add
indices to our database. If we add the indices through the MongoDB shell, it means
that someone has to remember to add them again if the application needs to migrate
to a new server. Therefore, we'll create an independent Python script just to make the
indices. On your local machine, create a Python file in the waitercaller directory
and call it create_mongo_indices.py. Add the following code:

import pymongo
client = pymongo.MongoClient()
c = client['waitercaller']
print c.users.create_index("email", unique=True)
print c.requests.create_index("table_id", unique=True)

The connection code is the same that we used before, and the code used to create
indices is simple enough. We called the create_index() method on the collection
we want to create an index on and then passed in the field name to use to create the
index. In our case, we also passed in the unique=True flag to specify that the indices
should also have a unique constraint added to them.

Now, we need to make a small change to our application so that it can deal with the
case of a new request being made when an identical request is already open. In the
dbhelper.py file, update the add_request() method to the following:

 def add_request(self, table_id, time):
 table = self.get_table(table_id)
 try:
 self.db.requests.insert({"owner": table['owner'],
 "table_number": table['number'], "table_id": table_id,
 "time": time})
 return True
 except pymongo.errors.DuplicateKeyError:
 return False

If we try to insert a request into our database with a duplicate table_id field,
DuplicateKeyError will be thrown. In the updated code, we will catch this error
and return False to indicate that the request wasn't successfully created. We will
also now return True when the request is successful. To take advantage of this
information in the application code, we also need to update the new_request()
method. Edit the method so that it looks similar to this:

@app.route("/newrequest/<tid>")
def new_request(tid):
 if DB.add_request(tid, datetime.datetime.now()):
 return "Your request has been logged and a waiter will
 be with you shortly"
 return "There is already a request pending for this table.
 Please be patient, a waiter will be there ASAP"

Using MongoDB with Our Waiter Caller Project

[226]

Now, we will check whether the new request was successfully created or whether
an existing one blocked it. In the latter case, we will return a different message,
requesting patience from the patron.

To test the new functionality, add the new and modified files to Git (waitercaller.
py, dbhelper.py, create_mongo_indices.py), commit, and then push them.
On your VPS, pull in the new changes, restart Apache, and run the following:

python create_mongo_indices.py

To create the indices we discussed before, run some tests again in your browser to
make sure nothing broke and to verify that you get the new message displayed when
you visit the same attention request URL repeatedly without resolving the request,
as in the screenshot that follows:

You may find that, due to your browser pre-fetching pages, attention requests get
made automatically when you first create tables through the account page. If you see
the message as displayed in the above image when you don't expect to, resolve any
open requests on the dashboard page, and visit the newrequest URL again.

Adding a favicon
The last thing we'll add to our application is a favicon. Favicons are the small images
that most browsers display in the tab bar when a page is open and on the bookmarks
bar if a user bookmarks a site. They add a friendly touch to the site and help a user
identify a site more quickly.

The tricky part about favicons is that they have to be really small. It's customary
to use a 16x16 pixel image as a favicon—which doesn't leave that much room for
creativity. There are some nice websites to help you create the perfect favicon for
your website. One such site is favicon.cc, which allows you to create a favicon
from scratch (giving you 16x16 blank pixels to start), or it can import an image.
Using the import functionality, you can use a bigger image that favicon.cc
attempts to reduce to 16x16 pixels—this has mixed results and generally works
better with simpler images. An example favicon is included in the code bundle
in the static directory, and an enlarged version of it is shown in the following image:

favicon.cc
favicon.cc

Chapter 11

[227]

Once you have an icon (you can use the one provided in the code bundle), it's
easy to tell Flask to serve it along with the rest of the page. Make sure your icon is
called favicon.ico (the standard extension for icon files is .ico) and put it in the
waitercaller/static directory. Then, add the following line to the <head> section
of the base.html template:

<link rel="shortcut icon" href="{{ url_for('static',
filename='favicon.ico') }}">

This creates a link to the favicon.ico file using Jinja's url_for function to generate
the full URL needed to be directed to the static directory, which is simply converted
to the plain HTML (which you can see by hitting View source in your browser).
Take a look at the following:

<link rel="shortcut icon" href="/static/favicon.ico">

Now, if you reload the page again, you will see the favicon in the tab heading, and
if you bookmark the page, you'll view the icon in the bookmarks toolbar of your
browser as well, as seen in the following screenshot:

Using MongoDB with Our Waiter Caller Project

[228]

That's it for our last project. Of course, no web application is ever truly complete, and
there are countless improvements to make and features to add. By this stage in the
book, you will have more than enough knowledge to start adding your own changes
and bringing your original ideas into creation, either as extensions to the projects we
walked through in this book or from scratch, as brand-new web applications.

Summary
In this chapter, we completed our Waiter Caller web application. We installed
MongoDB on our server, learned how to use it through the shell, and then installed
PyMongo. Using PyMongo, we created a new database helper class to allow our
application code to run operations on the new database.

Finally, we added a favicon to make our web application friendlier and more
aesthetically pleasing to users.

In the next and final chapter, we'll take a look at what could still be added to our
application to improve usability and security and end with some pointers on where
to look next to continue learning about Flask and web development through Python.

[229]

A Sneak Peek into the Future
We covered quite a variety of topics in this book, and we walked through the
building of three functional and useful web applications. However, books, by nature,
are of a finite length, while the world of web development tends towards the infinite,
so we couldn't add everything. In this final chapter, we'll take a whistle-stop tour
around the technologies that we weren't able to cover in detail. We'll start with
looking at technologies that could be used directly to expand or improve the projects
we created in this book. Then, we'll look at some more advanced Flask features that
we didn't need to use in our projects but which will almost certainly be useful in
other projects. Finally, we'll have a brief discussion of the technologies that are useful
for web development in general but are not specific to either the projects we built
here or to Flask.

Expanding the projects
The projects we built are all functional, but they are not quite ready for heavy,
real-time use. If they were to be built out to handle thousands of users or were
commercial applications, they would need a few more features. These are discussed
in the following sections.

Adding a domain name
We accessed all of our projects using the IP address of our VPS. You're almost
certainly used to visiting web applications using domain names rather than IP
addresses. When you use a domain name, such as http://google.com, your
browser first sends off a request to a DNS server to find out what the IP address
associated with this domain is. DNS servers are similar to huge automatic telephone
books that exist solely to translate the domain names that humans find easier to
remember (such as http://google.com) in than the IP addresses that organize the
Internet (for example, 123.456.789.123).

http://google.com
http://google.com

A Sneak Peek into the Future

[230]

To use a domain name instead of the IP address, you need to purchase one from a
registrar. Often your Internet Service Provider (ISP) can assist you with purchasing
a domain name (such as yourname.com). Domain names are normally fairly
inexpensive, and you can get them for as little as a few dollars a year.

Once you purchase a domain name, you need to set up the DNS settings correctly.
Most ISPs have an online control panel where you can do this yourself, but you may
have to contact them to assist you. Your domain needs to point to your VPS. To do
this, you create an "A" type DNS record that maps the domain to your IP.

Once your domain name points at your server, you can configure Apache to
recognize it by using it instead of our example.com placeholder that we put
in the Apache configuration files, such as /etc/apache2/sites-available/
waitercaller.conf.

Changes to domain names also take a while to propagate—that is, the major DNS
servers of the world need to be updated so that when someone visits your domain
name, the DNS server can redirect them to your IP address. DNS propagation can
take hours.

Adding HTTPS
You've probably noticed that banks, large corporations such as Google and
Microsoft, and an ever-growing number of other companies, have their websites
automatically redirect to an HTTPS version. The "S" stands for secure, so the full
acronym becomes Hyper Text Transport Protocol Secure. Whenever you see HTTPS
in your browser's navigation bar (normally with a green padlock next to it) it means
that all traffic flowing between you and the server is encrypted. This prevents so-
called man in the middle attacks, where a malicious person between you and the server
can view or modify the content that you and the server exchange.

Until recently, this encryption was achieved by the site owner by purchasing an
expensive certificate from Certificate Authority (CA). CA's job is to act as a trusted
third party between you and the server, issuing a signed certificate to the owner of
a site. This certificate can be used to set up an encrypted channel between the client
and the server. Because of the prohibitive cost, HTTPS was only used where security
was absolutely necessary (for example, in online banking) and by companies such
as Google who could afford the high fees. With everyone beginning to realize that
the trust-based model of World Wide Web is inherently flawed, HTTPS is becoming
more and more popular even for small blogs and personal websites. Companies such
as Let's Encrypt (https://letsencrypt.org) are now offering certificates for free
and these certificates can easily be installed and configured to work with popular
web servers, such as Apache.

https://letsencrypt.org

Appendix

[231]

For our final project, as we are handling sensitive data (specifically passwords),
using HTTPS is a must for nontrivial usage of our application, and it's also desirable
for our other two projects (HTTPS is always better than HTTP). Although the process
of setting up certificates to work with your web server is far simpler now than it was
a couple of years ago, a full walk-through of how to set up Apache2 to play with a
CA certificate is beyond the scope of this book.

However, if you only take the time to learn about one of the technologies mentioned
in this chapter, then it should be this one. Here is a link to a very simple Digital
Ocean tutorial that shows you how to set up the certificate on Ubuntu 14.04 to work
with Apache2 (the exact configuration we used in this book):

https://www.digitalocean.com/community/tutorials/how-to-secure-
apache-with-let-s-encrypt-on-ubuntu-14-04

E-mail confirmation for new registrations
You probably noted in our third project that our registration process was a little bit
unusual. The normal way for new users to register on a site is as follows:

1. User fills out registration form and submits it.
2. Server saves the data in the database.
3. Server generates a unique and secure token and stores the token associated

with the registration, which it marks as incomplete.
4. Server e-mails the token to the user in the form of a URL and requests that

the user click on the URL to confirm the account.
5. User clicks on URL with the unique token.
6. Server finds an incomplete registration associated with this token and marks

the registration as confirmed.

The preceding process is in order to prove that the user gave us a real e-mail address
to which he or she has access. Of course, the user does not want to wait for someone
to manually send an e-mail, so the confirmation e-mail has to be sent automatically.
This leads to a few complications, including the need to set up a mail server and the
fact that the automatic confirmation e-mail we send may well end up in the user's
spam folder, leading to frustration all round. Another option is to use an E-mail as a
service platform, such as Amazon's Simple E-mail Service (SES). However, these are
not usually free.

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04

A Sneak Peek into the Future

[232]

Once the user has a confirmed e-mail account, we can also use it to allow the user to
reset a forgotten password. Again, this would involve sending an automatic e-mail to
users who wanted to reset their password. The e-mail would again contain a secure
unique token in a URL that the user would click on to prove that he or she really did
make the password reset request. We would then allow the user to type in a new
password and update the database with the new (hashed and salted) password. Note
that we can't and shouldn't send the user his or her own password because we store
only the salted and hashed version of the password; we have no way of discovering
the forgotten one.

The complete user account system with automatic e-mail confirmations and the
"forgot your password" functionality is fairly complex. We could set it up using
nothing but Python and Flask and an e-mail server, but in the next section, we'll
also discuss some more Flask extensions that could make this process easier.

Google Analytics
If we run any of the web applications commercially, we'll probably be interested
in how many people actually use them. This would help us in deciding how
(and whether) to monetize our applications and provide other useful insights.

The most common way to achieve this is through Google Analytics. This is a service
from Google to track not only how many people visit your site but also how long
they spend on it, how they found it, their country, information about the device they
use for web browsing, and many other insightful statistics. Google Analytics is free,
and to get started with using it, you need to simply create an account on https://
analytics.google.com (or use your existing Google account). After filling in
some information about your site, you'll be given a short snippet of JavaScript. This
JavaScript code contains a unique tracking ID assigned to your site. You need to add
the JavaScript code to your site, and whenever anyone visits the site, the JavaScript
code will be loaded into their web browser and will send information about them to
Google, which will then use the unique ID to associate the information with you. On
the Google Analytics dashboard, you can then see graphs of the number of visitors,
the length of their visits, and many more pieces of information.

In the case of our waiter-caller project, we'd add the JavaScript at the end of the
base.html file along with the Bootstrap JavaScript code.

https://analytics.google.com
https://analytics.google.com

Appendix

[233]

Scalability
The best problem to have as a web application creator is having made an application
that is too popular. If lots of people are visiting your application, it means that you
created something good (and you can possible start charging people money for it).
Our little VPS will not handle a lot of traffic. If thousands of people visit the site
simultaneously, we'll run out of network bandwidth, processing capacity, memory,
and disk space very quickly.

A complete discussion on creating scalable web applications would be a book all on
its own. However, some of the steps we would need to take would be:

• Run the database on a dedicated machine: At the moment, we run our
web server and database on the same physical machine. For a larger web
application, the database would have its own dedicated machine so that
heavy database use (for instance, many restaurant patrons creating new
requests) wouldn't have a negative impact on the people who just wanted to
browse our home page. Normally, the database machine would have lots of
disk space and memory, while the machine running the web server would
focus more on having high bandwidth availability and processing power.

• Run a load balancer: If we have a lot of visitors, one machine will not be
able to keep up with the load no matter how big and powerful the machine
is. We would therefore run several duplicate web server machines. The
problem would then be to evenly distribute new visitors among all the
different machines. To solve this, we would use something called a load
balancer, which is responsible for nothing but accepting the initial request
from the user (that is, when the user visits your homepage) and assigning
this user to one of the replica web servers.

As we grow bigger, the situation would grow more and more complicated, and
we would add replica database machines as well. A popular site requires full-time
maintenance, often by a team of people, because hardware fails, malicious users
exist, and updates (which are necessary to mitigate attacks by malicious users)
tend to break the compatibility between software. On the bright side, if any web
applications were to grow popular enough to warrant the preceding, the application
would probably also generate enough revenue to make all the issues discussed an
"SEP", or somebody else's problem. That is, we could hire a system's administrator,
a database administrator, and a chief security officer, tell them to sort it out, and
spend the rest of our days on ocean cruises. On this note, let's take a look at some
Flask-specific expansions to our knowledge.

A Sneak Peek into the Future

[234]

Expanding your Flask knowledge
You might expect that Flask, being a micro framework, could be covered in its entirety
in a single book. However, there are some potentially very useful parts of Flask that we
didn't need for any of our three projects. We'll briefly outline these here.

VirtualEnv
The first library worth mentioning is not actually Flask-specific, and if you've spent
some time on Python development before, you will almost certainly come across it.
VirtualEnv is a Python library that creates a virtual Python environment on your
machine. It can be used in conjunction with Flask either only on your development
machine or both on your development machine and server. Its main purpose is to
isolate your entire Python environment into a virtual one, including all the Python
modules that you use. This has two major benefits. The first is that sometimes you
need to run two different Python projects on the same machine, but each project
requires a different version of the same library. Using VirtualEnv, each project
would have its own virtualized version of the Python setup, so it becomes trivial
to install two different version of the same library. The second advantage is that
your environment becomes more portable, and in theory, it is easy to migrate an
application running in a VirtualEnv environment to another machine that has
VirtualEnv installed.

The VirtualEnv environment is widely used for Python development, especially
for Flask. My decision to not include it in the main body of the book proved highly
controversial with the reviewers, many of whom felt that the book was incomplete
without it. I decided not to include it for two reasons. The first is that while I was
learning Flask, I read many tutorials and examples, which included VirtualEnv. I
always found the extra work needed for the setup and explanation of VirtualEnv
and virtual environments in general to be distracting from the main content of the
tutorial (namely, using Flask). The second reason is that I still often do not use it in
the Flask projects I build today. If you're not running old software that depends on
a particular version of a particular library, then installing useful Python libraries
system-wide so that they can be used by all your Python applications is convenient.
Also, sometimes, VirtualEnv can just become a mission without providing any value.

Of course, you may already have your own opinion on VirtualEnv, in which case
you're welcome to go along with it. There's nothing stopping anyone from building
any of the projects in this book in a VirtualEnv environment if they have a little
experience. If you have not used it before, it's well worth looking at. You can install it
through pip and try it out to take a look at exactly what it does and whether it can be
of use in your particular scenario. You can read more about it and how to use it here:

http://docs.python-guide.org/en/latest/dev/virtualenvs/

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Appendix

[235]

Flask Blueprints
Perhaps the biggest feature of Flask that we haven't mentioned in this book is
Flask Blueprints. You must have noted after building three Flask applications that
certain patterns crop up time and again. Repeated code is bad code even over a
number of different applications; if you find a better way to do something or need
to make some changes for an update, you don't want to make the same change across
several applications.

Blueprints provide a way to specify patterns for a Flask application. If you have
several applications that use the same code to return templates or connect to a
database, you can rather write this common code in a blueprint and then have all the
applications register the blueprint.

You can read more about Flask Blueprints, take a look at examples, and learn how to
get started with using them at http://flask.pocoo.org/docs/0.10/blueprints/.

Flask extensions
We looked at quite a few different Flask extensions over the course of our three
projects. However, because of the educational focus of the book, we chose to write
some code from scratch that may be better off using existing extensions. (Generally
when developing, we want to avoid reinventing the wheel. If someone else has
already put thought into solving a problem and provided a well-developed and
well-maintained solution, it's better to use their offerings than to try and create our
own.) Of special interest are the extensions we could use to make our user account
system simpler and more powerful and those that offer us a more abstract way to
talk to our database.

Flask-SQLAlchemy
Another controversial decision in this book was of not introducing the Flask-
SQLAlchemy extension along with MySQL. SQLAlchemy provides a SQL toolkit
and ORM to make it easier and more secure to interact with SQL databases from a
Python environment. ORM provides another layer of abstraction between the web
application and database. Instead of having to write the SQL code directly, one
can make calls to a database using Python objects, which ORM will then translate
to and from SQL. This makes the database easier to write and maintain and also
more secure (ORM is normally very good at mitigating against any potential SQL
injection vulnerabilities). The reasons to omit it were similar to the reasons to omit
VirtualEnv—when learning, too many layers of abstraction can do more harm than
good, and it's always advantageous to have first-hand experience with the problems
that tools solve before blindly using the tools directly.

http://flask.pocoo.org/docs/0.10/blueprints/

A Sneak Peek into the Future

[236]

For any Flask application that uses a MySQL database, such as our Crime Map
project, it is highly recommendable to use ORM, as with most Flask extensions.
Flask-SQLAlchemy is just a wrapper for an existing non-Flask-specific library.
You can find out more about SQLAlchemy at http://www.sqlalchemy.org/ and a
comprehensive guide to Flask-SQLAlchemy, including common usage patterns, here:

http://flask.pocoo.org/docs/0.10/patterns/sqlalchemy/

Flask MongoDB extensions
There are several Flask extensions that are intended to make interfacing with
MongoDB easier. As MongoDB is relatively new, none of these has reached quite
the maturity or is in as wide use as SQLAlchemy; therefore, if you intend to use one
of them, it is recommended that you examine each to decide which one best suits
your needs.

Flask-MongoAlchemy
Perhaps the most similar to SQLAlchemy (and not just by name) is Flask-
MongoAlchemy. Similarly to SQLAlchemy, MongoAlchemy is not Flask-specific.
You can read more about the main project here at http://www.mongoalchemy.org.
Flask-MongoAlchemy is a Flask wrapper for MongoAlchemy, which you can read
more about here:

http://pythonhosted.org/Flask-MongoAlchemy

Flask-PyMongo
A thinner wrapper to MongoDB that is closer to using PyMongo directly as we did
in our third project is Flask-PyMongo. Unlike MongoAlchemy, this does not provide
an ORM equivalent; instead, it simply provides a way of connecting to MongoDB
through PyMongo using syntax that is more consistent with the way Flask usually
handles external resources. You can have a quick introduction to Flask-PyMongo on
its GitHub page here:

https://github.com/dcrosta/flask-pymongo

Flask-MongoEngine
Yet another solution to using Flask in conjunction with MongoDB is MongoEngine
(http://mongoengine.org). This is notable because it integrates with WTForms
and Flask-Security, which we'll discuss in the following sections. You can read more
about the Flask-specific extension for Mongo Engine at https://pypi.python.org/
pypi/flask-mongoengine.

http://www.sqlalchemy.org/
http://flask.pocoo.org/docs/0.10/patterns/sqlalchemy/
http://www.mongoalchemy.org
http://pythonhosted.org/Flask-MongoAlchemy
https://github.com/dcrosta/flask-pymongo
http://mongoengine.org
https://pypi.python.org/pypi/flask-mongoengine
https://pypi.python.org/pypi/flask-mongoengine

Appendix

[237]

Flask-Mail
If we wanted to implement an automatic e-mail sending solution, such as that
described earlier in this chapter, a helpful extension would be Flask-Mail. This
allows you to easily send e-mails from your Flask application along with handling
attachments and bulk mailing. As mentioned before, these days, it's worthwhile to
consider using a third-party service such as Amazon's SES instead of sending e-mails
yourself. You can read more about Flask-Mail at http://pythonhosted.org/
Flask-Mail.

Flask-Security
The final extension we'll talk about is Flask-Security. This extension is notable because
a large part of it is actually built by combining other Flask extensions. In some ways,
it departs from the Flask philosophy of doing as little as possible to be useful and
allowing the user full freedom for custom implementations. It assumes that you are
using one of the database frameworks we described, and it pulls together functionality
from Flask-Login, WTForms, Flask-Mail, and other extensions to attempt to make
building user account control systems as straightforward as possible. If we used this,
we would have had a centralized way of handling registering accounts, logging in
accounts, encrypting passwords, and sending e-mails instead of having to implement
each part of the login system separately. You can read more about Flask-Security here:

https://pythonhosted.org/Flask-Security

Other Flask extensions
There are many Flask extensions, and we've only highlighted the ones that we think
would be generally applicable in many web development scenarios here. Of course,
when you develop a unique web application, you'll have much more specific needs,
and chances are that someone has already had a similar need and created a solution.
You can find an extensive (but not complete) list of Flask extensions here:

http://flask.pocoo.org/extensions

Expanding your web development
knowledge
In this book, we focused on backend development—that done through Python or
Flask. A large part of developing web applications is building a frontend that is
powerful, aesthetically pleasing, and intuitive to use. Although we provided a solid
grounding in HTML, CSS, and JavaScript, each of these topics is big enough for its
own book, and many such books exist.

http://pythonhosted.org/Flask-Mail
http://pythonhosted.org/Flask-Mail
https://pythonhosted.org/Flask-Security
http://flask.pocoo.org/extensions

A Sneak Peek into the Future

[238]

JavaScript is perhaps the most important of the three. Known as the "language of the
web", it has gained steadily in popularity over the last few years (although, as with
all languages, it has its fair share of critics). There are many frameworks for building
JavaScript-intensive web applications (so many, in fact, that their sheer number
and the frequency of new ones being released has become a topic of humor among
developers). We introduced Bootstrap in this book, which includes basic JavaScript
components, but for more heavily interactive applications, there exist larger
frameworks. Three of the more popular frontend frameworks include AngularJS
(built by Google), React.js (built by Facebook), and Ember.js (sponsored by a variety
of corporations, including Yahoo!). Learning any of these frameworks or one of
the many others will definitely help you build larger and more complicated web
applications with richer frontends.

JavaScript is also no longer limited to the frontend, and many modern web
applications are built using JavaScript on the server side as well. A common way to
achieve this is through Node.js, which could have fully replaced Python and Flask in
any of the projects we built.

HTML5 and CSS3 have grown far more powerful than the older technologies they
evolved from. Earlier, there was a clear division of labor, with HTML for content, CSS
for styling, and JavaScript for actions. Now, there is far more overlap between the
capabilities of the three technologies, and some impressive and interactive applications
are built using only HTML5 and CSS3 without the normal addition of JavaScript.

Summary
In this appendix, we looked forwards and pointed out some key areas and resources
that will help you move beyond what was covered in detail in this book. We covered
these areas in three topics: the projects we worked on in this book, the Flask resources
that we didn't use, and web development in general.

This brings us to the end. However, the world of technology is so vast and so rapidly
moving that, hopefully, this is more of a beginning than an end. As you continue
your adventures, learning more about life, Python, and web development, I hope
that some of the ideas presented in this book stay with you.

[239]

Index
A
Account and Dashboard pages

adding 170
Jinja templates 170
restaurant tables, creating 176

advanced uses, Jinja templates
about 33
code, pushing to server 37
hyperlinks, adding 36, 37
Jinja objects, using 34
looping logic, adding 35

Apache configuration
reference link 13

application
deploying, to production 6
testing, in production 222, 223

attention request code
dashboard page, auto-refreshing 192
database code, adding 187, 188
delete methods, adding 188
get methods, adding 188
resolve request application code,

adding 190
route, adding 187
testing 191, 192
writing 186

attention requests
code, writing 186
displaying, by modifying template

code 189, 190
handling, by adding functionality 186
used, by modifying dashboard 189

B
base template 170
basic database web application

code, running on VPS 91, 92
code, viewing 87
creating 86
directory structure, setting up 86
mitigating, against SQL injection 93
SQL code, viewing 88
view code, creating 90

basic uses, Jinja templates
about 30, 31
basic template, rendering 31, 32
dynamic data, displaying 33
dynamic data, passing 32

Bitbucket
reference link 10

Bitly 184
bitly API

bitlyhelper file, creating 185
bitly module, using 185
oauth token, obtaining 184
used, for URL shortening 183
using 184

bitly oauth token
reference link 184

blocks 170
Bootstrap

about 146
downloading 146
downloading, reference link 146
homepage, reference link 146

[240]

subpages, reference link 146
templates 147-150
used, for starting Waiter Caller App 145

brute forcing 162

C
Cascading Style Sheets. See CSS
category

validating 133, 134
Certificate Authority (CA) 230
city customization

search box, adding to template 50
user, allowing for 50
user's city search, using in Python

code 51, 52
cookies, Flask

check, by writing fallback logic 67
retrieving 67
retrieving, for other data 68, 69
setting 66
using 65

Create, Read, Update, and Delete
(CRUD) 89

Crime Map database
creating, in MySQL 81
database setup script, creating 82, 83
database setup script, using 84
external CSS, adding 111
Google Maps widget, adding 100, 101

Cross Site Request Forgery (CSRF)
about 197
reference link 197

CSS
about 64
adding, to Headlines application 70
external CSS 70
first CSS, adding 71, 73
inline CSS 71
internal CSS 71
our inputs, styling 74, 75
padding, adding 73
reference link 71

CSS padding
about 73
div tags, adding to template file 74
more styles, adding 73

currency
about 54
adding, for input selection 59
data, adding 45
data, displaying in template 56
HTML select drop-down element,

selecting 58
Open Exchange Rates API, using 54, 55
selected currency, displaying in drop-down

input 60, 61
selection, by adding inputs 57

currency function
using 55

D
data

creating, with MongoDB 214, 215
deleting, with MongoDB 217, 218
reading, with MongoDB 215-217
validating 135-138

database application
mock, creating 98
running, locally 98

database application mock
code, writing 99, 100
creating 98
expectations, validating 100
test flag, adding 99

database setup script, Crime Map database
committing 84
creating 82, 83
credentials, adding 85
database, creating 83
indexing 84
running 85
table columns, viewing 83
using 84

DBHelper class
request methods, adding 221
table methods, adding 219, 221

[241]

user methods, adding 219
writing 218

DELETE statement
reference link 95

description
validating 138, 139

development environment
about 6
creating 2
Flask, installing 3
pip, installing 2
Python package manager (pip) 2

don't repeat yourself (DRY) 133

E
embedded Google Maps widget

adding, to crime map project 100
map, adding to template 101
map, customizing 105

errors, registration form
CSS, adding for errors 200
displaying, in template 199, 200
displaying, to user 199

existing crimes, displaying on map
about 118
data, obtaining from SQL 118, 119
data, passing to template 120
data, using in template 120-122
results, viewing 122-125

external CSS
adding, to crime map project 111
code, adding 112, 113
file, creating in directory structure 112
result, publishing 115, 116
result, viewing 114, 115
using, for configuring Flask 113

F
favicon

adding 226-228
reference link 226

finishing touches
adding 223
favicon, adding 226

Flask
about 2
cookies, retrieving 67
cookies, setting 66
cookies, using with 65
installing 3
overview 1
URL routing 23, 25, 26, 28

Flask application
creating 18, 19
serving, by Apache configuration 13-15
serving, with WSGI 11-13

Flask Blueprints
about 235
reference link 235

Flask extensions
about 235, 237
Flask-Mail 237
Flask-MongoEngine 236
Flask-Security 237
Flask-SQLAlchemy 235
MongoDB extensions 236
reference link 237

Flask knowledge
Blueprints 235
expanding 234
extensions 235
VirtualEnv 234

Flask-Login
about 150
importing 151
installing 151
reference link 150

Flask-Mail
reference link 237

Flask-MongoAlchemy
reference links 236

Flask MongoDB extensions
about 236
Flask-MongoAlchemy 236
Flask-PyMongo 236

Flask-MongoEngine
reference link 236

[242]

Flask-PyMongo
reference link 236

Flask-Security
reference link 237

Flask-SQLAlchemy
about 235
reference links 236

Fox News
reference link 23

G
Git

installing 9-11
using 9-11

GitHub
reference link 10

Git repository
local project structure, setting up 143, 144
project, setting up on VPS 144, 145
setting up 18, 78, 143

Google
reference link 229

Google Analytics
reference link 232

Google Map markers
customizing 121
reference link 121

Google Maps 97

H
hamburger icon 150
hash reversal

website link 162
Headlines application

cookies, adding 65
cookies, using with Flask 65
CSS, adding 70
issues 65

Hello, World!
code, running 5
code, writing 3, 4
writing 3

HTTP cookies
reference link 64

HTTP GET
used, for obtaining user input 39-41

HTTP POST
used, for obtaining user input 42

Hyper Text Markup Language 21
Hyper Text Transport Protocol Secure

(HTTPS) 230

I
indices

adding, to MongoDB 224
locations, for addition, selecting 224-226

input
blacklisting 132
sanitizing 132
validating 132

input form
adding, from crimes 109
category 109
date 109
description 109
external CSS, adding to crime

map project 111
HTML code 109-111
latitude and longitude 109
linking, to backend 116

input form, adding to backend
about 116
code, testing on server 117
database methods, adding 117
URL, setting up for POST data

collection 116
input validation

versus input sanitizing 132
Internet Service Provider (ISP) 230
IOL

reference link 23

J
JavaScript

reference link 97
Jinja

about 30
objects, using 34

[243]

templates, advanced uses 34
templates, basic uses 30, 31

Jinja templates
about 170
account template, creating 173
base template, creating 171, 172
dashboard template, creating 173
dynamic data, displaying 33
dynamic data, passing 32
home template, creating 174
hyperlinks, adding 36
looping logic, adding 35
routing code, adding 174, 175

JSON
about 48
parsing, with Python 48, 49

jumbotron
reference link 147

L
Linux, Apache, MySQL, and PHP

(LAMP stack) 80
location

validating 134
login form, WTForms

modifying 205
new LoginForm, creating in application

code 205, 206
new LoginForm, using in template 207

login functionality
adding 156
load_user function, creating 158
login function, writing 156, 157

M
magic strings 193
man in the middle attacks 230
map

existing crimes, displaying 118
markers, adding 105-107
single marker, using 107, 108

map, adding to template
about 101
debugging phase 103-105

HTML code, body 102, 103
JavaScript, using 101, 102
testing phase 103-105

message flashing
reference link 138

MongoDB
about 212
indices, adding 224
installation link 212
installing 212, 213
website link 212

MongoDB shell
commands, running 214
starting 213
used, for creating data 214, 215
used, for deleting data 217, 218
used, for reading data 215, 216
used, for updating data 216, 217
using 213

MongoEngine
reference link 236

MySQL
configuring, on VPS 80
Crime Map database, creating 81
installing, on VPS 81
Python drivers, installing 81

MySQL connectors
MySQLdb 81
PyMySQL 81

N
new request

reference link 186
NoSQL database 1

O
Object Oriented Programming 176
Object-relational Mapping (ORM) 78
Open Exchange Rates API

API key, obtaining 54
URL 54
using 55

[244]

OpenWeatherMap API
about 46
duplicate city names, handling 53
key, retrieving 47
reference link 46
used, for signing up 46

OpenWeatherMap API key
retrieving 47
URL 47

Open Web Application Security Project
(OWASP)

about 197
reference link 161

P
passwords management, cryptographic

hashes used
about 160
hashes, reversing 162, 163
passwords, salting 163, 164
Python hashlib 161

pip
installing 2

production environment 6
project

domain name, adding 229, 230
e-mail confirmation, for new registrations

231, 232
expanding 229
Google Analytics, using 232
HTTPS, adding 230, 231
scalability 233
setting up 18

PuTTY
reference link 7

PyMongo
about 218
application code, modifying 222
DBHelper class, writing 218

PyPI
reference link 136

Python
reference link 48
RSS, using 21, 22

used, for parsing JSON 48, 49
Python drivers

installing, for MySQL 81

R
registration form, WTForms

errors, displaying to user 199
final form, testing 201, 202
new form, testing 198
rendering 195
successful registration notification,

adding 202
template code, updating 196, 197

Relational Database Management Systems
(RDBMS) 80

relational databases 79, 80
request context

reference link 41
restaurant table code

account route, modifying for table data
pass 180

create table database code, adding 178, 179
create table form, adding 176
create table route, adding 177, 178
delete table route, adding to

backend code 181
template, modifying for table display 180
view table database code, adding 179
writing 176

restaurant tables
code, testing 182, 183
code, writing 176
creating 176

RSS
about 19, 20
feeds 19, 20
reference links 20
using, from Python 21, 22

S
Saint Helena Pound (SHP) 70
secure password storage, Python

application code, updating 166, 167
database code, updating 165

[245]

implementing 164
PasswordHelper class, creating 164, 165

Selenium
reference link 223

server
configuring 8, 9

Simple E-mail Service (SES) 231
SQL

injecting, in database application 93, 94
SQL code

data, deleting 90
data, inserting 89
data, reading 89
viewing 88, 89

SQL injection
mitigating against 93-96

successful registration notification
adding 202
message, passing from application

code 203
message, using in template code 203, 204

T
table columns

category field 84
date field 84
description field 84
id field 83
latitude and longitude field 83
updated_at field 84

template inheritance 170

U
Ubuntu 14.04 2
unique index 224
URL routing

about 23, 25, 28
reference links 23

URLs
shortening, with bitly API 183

user
about 155
authenticating 153

class, creating 153, 154
configuration, adding 155, 156
database, mocking for 154, 155
imports, adding 155, 156
logging in 155
logging out 159
login functionality, adding 156
login functionality, checking 159
registering 160

user account control
adding, to Waiter Caller App 150
database, mocking for users 154, 155
Flask extensions, using 151
Flask-Login 150
Flask-Login, importing 151
Flask-Login, installing 151
restricted route, adding 151, 152
user, authenticating 152
user, logging in 155
user, logging out 159
user, registering 160

user input
obtaining, HTTP GET used 39-41
obtaining, HTTP POST used 42

user input, obtaining with HTTP POST
branch, creating in Git 43
Git repository, reverting 45
obtaining 42, 43
POST routes, adding in Flask 44
POST, used by HTML form 44, 45

user registration
about 160
passwords, managing with cryptographic

hashes 160
secure password storage, implementing in

Python 164

V
validation

implementing 133
validation location

inputs, identifying 128, 129
selecting 127, 128

[246]

Validators
about 195
DataRequired 195
Email 195
EqualTo 195
Length 195

VirtualEnv
about 234
reference link 234

Virtual Private Server (VPS)
about 6
MySQL, configuring 80
MySQL, installing 80, 81
setting up 6-8

W
Waiter Caller App

features 142
Git repository, setting up 143
overview 141, 142
starting, Bootstrap used 145
user account control, adding 150

weather
adding 45
city, customizing 50
code, using 49
data, displaying 50
duplicate city names, handling 53
new functionality, checking 52
OpenWeatherMap API, using 46

web development knowledge
expanding 237, 238

whitelist approach 132
WSGI

used, for serving Flask application 12, 13
WTForms

about 193
create table form, modifying 208-210
Flask-WTF, installing 194
login form, modifying 205
registration form, creating 194, 195
registration form, rendering 195
used, for adding user feedback 192
using, in application code 198

X
XSS example

exploring 129-131
potential 131

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello, World!
	Introducing Flask
	Creating our development environment
	Installing pip
	Installing Flask

	Writing "Hello, World!"
	Writing the code
	Running the code

	Deploying our application to production
	Setting up a Virtual Private Server
	Configuring our server
	Installing and using Git
	Serving our Flask app with WSGI
	Configuring Apache to serve our Flask application

	Summary

	Chapter 2: Getting Started with Our Headlines Project
	Setting up our project and a Git repository
	Creating a new Flask application
	Introduction to RSS and RSS feeds
	Using RSS from Python
	URL routing in Flask
	Publishing our Headlines application

	Summary

	Chapter 3: Using Templates in Our Headlines Project
	Introducing Jinja
	Basic use of Jinja templates
	Rendering a basic template
	Passing dynamic data to our template
	Displaying dynamic data in our template

	Advanced use of Jinja templates
	Using Jinja objects
	Adding looping logic to our template
	Adding hyperlinks to our template
	Pushing our code to the server

	Summary

	Chapter 4: User Input for Our Headlines Project
	Getting user input using HTTP GET
	Getting user input using HTTP POST
	Creating a branch in Git
	Adding POST routes in Flask
	Making our HTML form use POST
	Reverting our Git repository

	Adding weather and currency data
	Introducing the OpenWeatherMap API
	Signing up with OpenWeatherMap

	Retrieving your OpenWeatherMap API key
	Parsing JSON with Python
	Introducing JSON
	Retrieving and parsing JSON in Python
	Using our weather code
	Displaying the weather data
	Allowing the user to customize the city
	Adding another search box to our template
	Using the user's city search in our Python code

	Checking our new functionality
	Handling duplicate city names
	Currency
	Getting an API key for the Open Exchange Rates API
	Using the Open Exchange Rates API
	Using our currency function
	Displaying the currency data in our template
	Adding inputs for the user to select currency
	Creating an HTML select drop-down element
	Adding all the currencies to the select input
	Displaying the selected currency in the drop-down input

	Summary

	Chapter 5: Improving the User Experience of Our Headlines Project
	Adding cookies to our Headlines application
	Using cookies with Flask
	Setting cookies in Flask
	Retrieving cookies in Flask

	Adding CSS to our Headlines application
	External, internal, and inline CSS
	Adding our first CSS
	Adding padding to our CSS
	Adding more styles to our CSS
	Adding the div tags to the template file

	Styling our inputs

	Summary

	Chapter 6: Building an Interactive Crime Map
	Setting up a new Git repository
	Understanding relational databases
	Installing and configuring MySQL on our VPS
	Installing MySQL on our VPS
	Installing Python drivers for MySQL

	Creating our Crime Map database in MySQL
	Creating a database setup script
	Creating the database
	Looking at our table columns
	Indexing and committing

	Using the database setup script
	Adding credentials to our setup script
	Running our database setup script

	Creating a basic database web application
	Setting up our directory structure
	Looking at our application code
	Looking at our SQL code
	Reading data
	Inserting data
	Deleting data

	Creating our view code
	Running the code on our VPS
	Mitigating against SQL injection
	Injecting SQL into our database application
	Mitigating against SQL injection

	Summary

	Chapter 7: Adding Google Maps to Our Crime Map Project
	Running a database application locally
	Creating a mock of our database
	Adding a test flag
	Writing the mock code
	Validating our expectations

	Adding an embedded Google Maps widget to our application
	Adding the map to our template
	Introducing JavaScript
	The body of our HTML code
	Testing and debugging

	Making our map interactive
	Adding markers
	Using a single marker

	Adding an input form for new crimes
	The HTML code for the form
	Adding external CSS to our web application
	Creating the CSS file in our directory structure
	Adding CSS code
	Configuring Flask to use CSS
	Viewing the result
	Publishing the result

	Linking the form to the backend
	Setting up the URL to collect POST data
	Adding the database methods
	Testing the code on the server

	Displaying existing crimes on our map
	Getting data from SQL
	Passing the data to our template
	Using the data in our template
	Viewing the results

	Summary

	Chapter 8: Validating User Input in Our Crime Map Project
	Choosing where to validate
	Identifying inputs that require validation

	Trying out an XSS example
	The potential of persistent XSS

	Validating and sanitizing
	White and blacklisting
	Validating versus sanitizing
	Implementing validation
	Validating the category
	Validating the location
	Validating the date
	Validating the description

	Summary

	Chapter 9: Building a Waiter Caller App
	Setting up a new git repository
	Setting up the new project locally
	Setting up the project on our VPS

	Using Bootstrap to kick-start our application
	Introducing Bootstrap
	Downloading Bootstrap
	Bootstrap templates

	Adding user account control to our application
	Introducing Flask-Login
	Installing and importing Flask-Login
	Using Flask extensions
	Adding a restricted route
	Authenticating a user
	Creating a user class

	Mocking our database for users
	Logging in a user
	Adding imports and configuration
	Adding the login functionality
	Checking the login functionality

	Logging out a user
	Registering a user
	Managing passwords with cryptographic hashes
	Implementing secure password storage in Python

	Summary

	Chapter 10: Template Inheritance and WTForms in Waiter Caller Project
	Adding the Account and Dashboard pages
	Introducing Jinja templates
	Creating the base template
	Creating the dashboard template
	Creating the account template
	Creating the home template
	Adding the routing code

	Creating restaurant tables
	Writing the restaurant table code
	Testing the restaurant table code

	Shortening URLs using the bitly API
	Introducing Bitly
	Using the bitly API
	Getting a bitly oauth token
	Creating the bitlyhelper file
	Using the bitly module

	Adding functionality to handle attention requests
	Writing the attention request code
	Adding the attention request route
	Adding the attention request database code
	Add the get and delete methods for attention requests
	Modifying the dashboard route to use attention requests
	Modifying the template code to display attention requests
	Adding the resolve request application code
	Testing the attention request code
	Auto-refreshing the dashboard page

	Adding user feedback with WTForms
	Introducing WTForms
	Installing Flask-WTF
	Creating the registration form
	Rendering the registration form
	Updating the application code
	Updating the template code
	Testing the new form
	Using WTForms in our application code
	Displaying errors to our user
	Testing the final registration form
	Adding a successful registration notification

	Modifying the login form
	Creating the new LoginForm in the application code
	Using the new LoginForm in the template

	Modifying the create table form

	Summary

	Chapter 11: Using MongoDB with Our Waiter Caller Project
	Introducing MongoDB
	Installing MongoDB
	Using the MongoDB shell
	Starting the MongoDB shell
	Running commands in the MongoDB shell
	Creating data with MongoDB
	Reading data with MongoDB
	Updating data with MongoDB
	Deleting data with MongoDB

	Introducing PyMongo
	Writing the DBHelper class
	Adding the user methods
	Adding the table methods
	Adding the request methods

	Changing the application code

	Testing our application in production
	Adding some finishing touches
	Adding indices to MongoDB
	Where do we add indices?

	Adding a favicon

	Summary

	Appendix: A Sneak Peek into the Future
	Expanding the projects
	Adding a domain name
	Adding HTTPS
	E-mail confirmation for new registrations
	Google Analytics
	Scalability

	Expanding your Flask knowledge
	VirtualEnv
	Flask Blueprints
	Flask extensions
	Flask-SQLAlchemy
	Flask MongoDB extensions
	Flask-MongoEngine
	Flask-Mail
	Flask-Security
	Other Flask extensions

	Expanding your web development knowledge
	Summary

	Index

